Copy
Ask AI
"""
Airflow Tools - DAG Management and Workflow Automation
This example demonstrates how to use AirflowTools for managing Apache Airflow DAGs.
Shows enable_ flag patterns for selective function access.
AirflowTools is a small tool (<6 functions) so it uses enable_ flags.
Run: `uv pip install apache-airflow` to install the dependencies
"""
from agno.agent import Agent
from agno.tools.airflow import AirflowTools
# ---------------------------------------------------------------------------
# Create Agent
# ---------------------------------------------------------------------------
# Example 1: All functions enabled (default behavior)
agent_full = Agent(
tools=[AirflowTools(dags_dir="tmp/dags")], # All functions enabled by default
description="You are an Airflow specialist with full DAG management capabilities.",
instructions=[
"Help users create, read, and manage Airflow DAGs",
"Ensure DAG files follow Airflow best practices",
"Provide clear explanations of DAG structure and components",
],
markdown=True,
)
# Example 2: Enable specific functions using enable_ flags
agent_readonly = Agent(
tools=[
AirflowTools(
dags_dir="tmp/dags",
enable_save_dag=False, # Disable DAG creation
enable_read_dag=True, # Enable DAG reading
)
],
description="You are an Airflow analyst focused on reading and analyzing existing DAGs.",
instructions=[
"Analyze existing DAG files and provide insights",
"Explain DAG structure and dependencies",
"Cannot create or modify DAGs, only read them",
],
markdown=True,
)
# Example 3: Enable all functions explicitly
agent_explicit = Agent(
tools=[
AirflowTools(
dags_dir="tmp/dags",
enable_save_dag=True,
enable_read_dag=True,
)
],
description="You are an Airflow developer with explicit permissions for all DAG operations.",
instructions=[
"Create and manage Airflow DAGs with best practices",
"Read existing DAGs to understand current workflows",
"Provide comprehensive DAG analysis and recommendations",
],
markdown=True,
)
# Example 4: Using the 'all=True' pattern
agent_all = Agent(
tools=[AirflowTools(dags_dir="tmp/dags", all=True)], # Enable all functions
description="You are a comprehensive Airflow manager with all capabilities enabled.",
instructions=[
"Manage complete Airflow workflows and DAG lifecycle",
"Create, read, and analyze DAGs as needed",
"Provide end-to-end Airflow development support",
],
markdown=True,
)
# Use the full agent for the main example
agent = agent_full
dag_content = """
from airflow import DAG
from airflow.operators.python import PythonOperator
from datetime import datetime, timedelta
default_args = {
'owner': 'airflow',
'depends_on_past': False,
'start_date': datetime(2024, 1, 1),
'email_on_failure': False,
'email_on_retry': False,
'retries': 1,
'retry_delay': timedelta(minutes=5),
}
# Using 'schedule' instead of deprecated 'schedule_interval'
with DAG(
'example_dag',
default_args=default_args,
description='A simple example DAG',
schedule='@daily', # Changed from schedule_interval
catchup=False
) as dag:
def print_hello():
print("Hello from Airflow!")
return "Hello task completed"
task = PythonOperator(
task_id='hello_task',
python_callable=print_hello,
dag=dag,
)
"""
# ---------------------------------------------------------------------------
# Run Agent
# ---------------------------------------------------------------------------
if __name__ == "__main__":
agent.run(f"Save this DAG file as 'example_dag.py': {dag_content}")
agent.print_response("Read the contents of 'example_dag.py'")
Run the Example
Copy
Ask AI
# Clone and setup repo
git clone https://github.com/agno-agi/agno.git
cd agno/cookbook/91_tools
# Create and activate virtual environment
./scripts/demo_setup.sh
source .venvs/demo/bin/activate
python airflow_tools.py