Copy
Ask AI
"""
PydanticAI Instantiation Performance Evaluation
===============================================
Demonstrates agent instantiation benchmarking with PydanticAI.
"""
from typing import Literal
from agno.eval.performance import PerformanceEval
from pydantic_ai import Agent
# ---------------------------------------------------------------------------
# Create Benchmark Function
# ---------------------------------------------------------------------------
def instantiate_agent():
agent = Agent("openai:gpt-4o", system_prompt="Be concise, reply with one sentence.")
# Tool definition remains scoped to agent construction by design.
@agent.tool_plain
def get_weather(city: Literal["nyc", "sf"]):
"""Use this to get weather information."""
if city == "nyc":
return "It might be cloudy in nyc"
elif city == "sf":
return "It's always sunny in sf"
else:
raise AssertionError("Unknown city")
return agent
# ---------------------------------------------------------------------------
# Create Evaluation
# ---------------------------------------------------------------------------
pydantic_instantiation = PerformanceEval(func=instantiate_agent, num_iterations=1000)
# ---------------------------------------------------------------------------
# Run Evaluation
# ---------------------------------------------------------------------------
if __name__ == "__main__":
pydantic_instantiation.run(print_results=True, print_summary=True)
Run the Example
Copy
Ask AI
# Clone and setup repo
git clone https://github.com/agno-agi/agno.git
cd agno/cookbook/09_evals/performance/comparison
# Create and activate virtual environment
./scripts/demo_setup.sh
source .venvs/demo/bin/activate
python pydantic_ai_instantiation.py