Copy
Ask AI
"""
External Tool Execution
=============================
Human-in-the-Loop: Execute a tool call outside of the agent.
"""
import subprocess
from agno.agent import Agent
from agno.db.sqlite import SqliteDb
from agno.models.openai import OpenAIResponses
from agno.tools import tool
from agno.utils import pprint
# We have to create a tool with the correct name, arguments and docstring for the agent to know what to call.
@tool(external_execution=True)
def execute_shell_command(command: str) -> str:
"""Execute a shell command.
Args:
command (str): The shell command to execute
Returns:
str: The output of the shell command
"""
if command.startswith("ls"):
return subprocess.check_output(command, shell=True).decode("utf-8")
else:
raise Exception(f"Unsupported command: {command}")
# ---------------------------------------------------------------------------
# Create Agent
# ---------------------------------------------------------------------------
agent = Agent(
model=OpenAIResponses(id="gpt-5-mini"),
tools=[execute_shell_command],
markdown=True,
db=SqliteDb(session_table="test_session", db_file="tmp/example.db"),
)
# ---------------------------------------------------------------------------
# Run Agent
# ---------------------------------------------------------------------------
if __name__ == "__main__":
run_response = agent.run("What files do I have in my current directory?")
if run_response.is_paused:
for requirement in run_response.active_requirements:
if requirement.needs_external_execution:
if requirement.tool_execution.tool_name == execute_shell_command.name:
print(
f"Executing {requirement.tool_execution.tool_name} with args {requirement.tool_execution.tool_args} externally"
)
# We execute the tool ourselves. You can also execute something completely external here.
result = execute_shell_command.entrypoint(
**requirement.tool_execution.tool_args
) # type: ignore
# We have to set the result on the tool execution object so that the agent can continue
requirement.set_external_execution_result(result)
run_response = agent.continue_run(
run_id=run_response.run_id,
requirements=run_response.requirements,
)
pprint.pprint_run_response(run_response)
# Or for simple debug flow
# agent.print_response("What files do I have in my current directory?")
Run the Example
Copy
Ask AI
# Clone and setup repo
git clone https://github.com/agno-agi/agno.git
cd agno/cookbook/02_agents/10_human_in_the_loop
# Create and activate virtual environment
./scripts/demo_setup.sh
source .venvs/demo/bin/activate
python external_tool_execution.py