Copy
Ask AI
"""
Approval Basic
=============================
Approval-backed HITL: @approval + @tool(requires_confirmation=True) with persistent DB record.
"""
import json
import os
import time
import httpx
from agno.agent import Agent
from agno.approval import approval
from agno.db.sqlite import SqliteDb
from agno.models.openai import OpenAIResponses
from agno.tools import tool
DB_FILE = "tmp/approvals_test.db"
@approval
@tool(requires_confirmation=True)
def get_top_hackernews_stories(num_stories: int) -> str:
"""Fetch top stories from Hacker News.
Args:
num_stories (int): Number of stories to retrieve.
Returns:
str: JSON string of story details.
"""
response = httpx.get("https://hacker-news.firebaseio.com/v0/topstories.json")
story_ids = response.json()
stories = []
for story_id in story_ids[:num_stories]:
story = httpx.get(
f"https://hacker-news.firebaseio.com/v0/item/{story_id}.json"
).json()
story.pop("text", None)
stories.append(story)
return json.dumps(stories)
# ---------------------------------------------------------------------------
# Create Agent
# ---------------------------------------------------------------------------
db = SqliteDb(
db_file=DB_FILE, session_table="agent_sessions", approvals_table="approvals"
)
agent = Agent(
model=OpenAIResponses(id="gpt-5-mini"),
tools=[get_top_hackernews_stories],
markdown=True,
db=db,
)
# ---------------------------------------------------------------------------
# Run Agent
# ---------------------------------------------------------------------------
if __name__ == "__main__":
# Clean up from previous runs
if os.path.exists(DB_FILE):
os.remove(DB_FILE)
os.makedirs("tmp", exist_ok=True)
# Re-create after cleanup
db = SqliteDb(
db_file=DB_FILE, session_table="agent_sessions", approvals_table="approvals"
)
agent = Agent(
model=OpenAIResponses(id="gpt-5-mini"),
tools=[get_top_hackernews_stories],
markdown=True,
db=db,
)
# Step 1: Run - agent will pause because the tool requires approval
print("--- Step 1: Running agent (expects pause) ---")
run_response = agent.run("Fetch the top 2 hackernews stories.")
print(f"Run status: {run_response.status}")
assert run_response.is_paused, f"Expected paused, got {run_response.status}"
print("Agent paused as expected.")
# Step 2: Check that an approval record was created in the DB
print("\n--- Step 2: Checking approval record in DB ---")
approvals_list, total = db.get_approvals(status="pending")
print(f"Pending approvals: {total}")
assert total >= 1, f"Expected at least 1 pending approval, got {total}"
approval_record = approvals_list[0]
print(f" Approval ID: {approval_record['id']}")
print(f" Run ID: {approval_record['run_id']}")
print(f" Status: {approval_record['status']}")
print(f" Source: {approval_record['source_type']}")
print(f" Context: {approval_record.get('context')}")
# Step 3: Confirm the requirement and continue the run
print("\n--- Step 3: Confirming and continuing ---")
for requirement in run_response.active_requirements:
if requirement.needs_confirmation:
print(f" Confirming tool: {requirement.tool_execution.tool_name}")
requirement.confirm()
run_response = agent.continue_run(
run_id=run_response.run_id,
requirements=run_response.requirements,
)
print(f"Run status after continue: {run_response.status}")
assert not run_response.is_paused, "Expected run to complete, but it's still paused"
# Step 4: Resolve the approval record in the DB
print("\n--- Step 4: Resolving approval in DB ---")
resolved = db.update_approval(
approval_record["id"],
expected_status="pending",
status="approved",
resolved_by="test_user",
resolved_at=int(time.time()),
)
assert resolved is not None, "Approval resolution failed (possible race condition)"
print(f" Resolved status: {resolved['status']}")
print(f" Resolved by: {resolved['resolved_by']}")
# Step 5: Verify no more pending approvals
print("\n--- Step 5: Verifying no pending approvals ---")
count = db.get_pending_approval_count()
print(f"Remaining pending approvals: {count}")
assert count == 0, f"Expected 0 pending approvals, got {count}"
print("\n--- All checks passed! ---")
print(f"\nAgent output (truncated): {str(run_response.content)[:200]}...")
Run the Example
Copy
Ask AI
# Clone and setup repo
git clone https://github.com/agno-agi/agno.git
cd agno/cookbook/02_agents/11_approvals
# Create and activate virtual environment
./scripts/demo_setup.sh
source .venvs/demo/bin/activate
python approval_basic.py