from agno.agent import Agent from agno.knowledge.knowledge import Knowledge from agno.models.meta import Llama from agno.vectordb.pgvector import PgVector db_url = "postgresql+psycopg://ai:ai@localhost:5532/ai" knowledge = Knowledge( vector_db=PgVector(table_name="recipes", db_url=db_url), ) # Add content to the knowledge knowledge.insert( url="https://agno-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf" ) agent = Agent( model=Llama(id="Llama-4-Maverick-17B-128E-Instruct-FP8"), knowledge=knowledge ) agent.print_response("How to make Thai curry?", markdown=True)
Set up your virtual environment
uv venv --python 3.12 source .venv/bin/activate
Set your LLAMA API key
export LLAMA_API_KEY=YOUR_API_KEY
Install dependencies
uv pip install sqlalchemy pgvector pypdf llama-api-client
Run Agent
python python cookbook/11_models/meta/llama/knowledge.py
Was this page helpful?