import asyncio from agno.agent import Agent from agno.knowledge.knowledge import Knowledge from agno.vectordb.qdrant import Qdrant COLLECTION_NAME = "thai-recipes" vector_db = Qdrant(collection=COLLECTION_NAME, url="http://localhost:6333") knowledge = Knowledge( vector_db=vector_db, ) agent = Agent(knowledge=knowledge) if __name__ == "__main__": asyncio.run( knowledge.ainsert( url="https://agno-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf" ) ) asyncio.run(agent.aprint_response("How to make Tom Kha Gai", markdown=True))
Set up your virtual environment
uv venv --python 3.12 source .venv/bin/activate
Install dependencies
uv pip install -U qdrant-client pypdf openai agno
Run Qdrant
docker run -d --name qdrant -p 6333:6333 qdrant/qdrant:latest
Run Agent
python cookbook/08_knowledge/vector_db/qdrant_db/async_qdrant_db.py
Was this page helpful?