Skip to main content
Structured output constrains an agent’s response to match a Pydantic schema. Instead of parsing free-form text, you get a validated object with typed fields.

Basic Usage

Define a Pydantic model and pass it as output_schema:
from pydantic import BaseModel, Field
from agno.agent import Agent
from agno.models.openai import OpenAIResponses

class MovieScript(BaseModel):
    setting: str = Field(description="Where the movie takes place")
    genre: str = Field(description="Movie genre")
    storyline: str = Field(description="Brief plot summary")

agent = Agent(
    model=OpenAIResponses(id="gpt-5.2"),
    output_schema=MovieScript,
)

response = agent.run("Write a movie script about a heist in Tokyo")

# response.content is a MovieScript object, not a string
print(response.content.setting)    # "Tokyo, Japan - 2024"
print(response.content.genre)      # "Action/Thriller"
print(response.content.storyline)  # "A retired thief is pulled back..."

How It Works

When you set output_schema, Agno:
  1. Converts your Pydantic model to a JSON schema
  2. Passes this schema to the model’s structured output API (if supported)
  3. Validates the response against your schema
  4. Returns a typed Pydantic object in response.content
Most major providers support structured output natively: OpenAI, Anthropic, Google.

Per-Run Schema

Override or set the schema at run time:
agent = Agent(model=OpenAIResponses(id="gpt-5.2"))

# Different schemas for different calls
sentiment = agent.run("Analyze sentiment: 'Great product!'", output_schema=SentimentResult)
entities = agent.run("Extract entities from this text...", output_schema=EntityList)
This is useful when one agent handles multiple tasks with different output formats.

With Tools

Structured output works alongside tools. The agent calls tools during execution, then formats the final response according to your schema:
from pydantic import BaseModel, Field
from agno.agent import Agent
from agno.models.openai import OpenAIResponses
from agno.tools.yfinance import YFinanceTools

class StockAnalysis(BaseModel):
    symbol: str
    current_price: float
    change_percent: float
    recommendation: str = Field(description="buy, hold, or sell")
    reasoning: str

agent = Agent(
    model=OpenAIResponses(id="gpt-5.2"),
    tools=[YFinanceTools()],
    output_schema=StockAnalysis,
)

# Agent calls YFinanceTools to get live data, then returns structured StockAnalysis
response = agent.run("Analyze NVDA and give me a recommendation")
analysis: StockAnalysis = response.content

print(analysis.symbol)          # "NVDA"
print(analysis.current_price)   # 142.50
print(analysis.recommendation)  # "buy"

Schema Design Tips

Use Field Descriptions

Descriptions guide the model on what to generate:
class Review(BaseModel):
    # Good: clear guidance
    sentiment: str = Field(description="Must be 'positive', 'negative', or 'neutral'")
    confidence: float = Field(ge=0, le=1, description="Confidence score from 0.0 to 1.0")

    # Less effective: no guidance
    rating: int

Use Constraints

Pydantic validators ensure valid output:
from pydantic import BaseModel, Field

class Rating(BaseModel):
    score: int = Field(ge=1, le=5, description="Rating from 1 to 5")
    tags: list[str] = Field(min_length=1, max_length=5)

Use Optional for Uncertain Fields

Mark fields as optional when data might not be available:
class CompanyInfo(BaseModel):
    name: str
    ticker: str
    market_cap: float | None = Field(None, description="Market cap if publicly traded")
    founded_year: int | None = None

Common Patterns

Data Extraction

from pydantic import BaseModel, Field

class ExtractedData(BaseModel):
    emails: list[str] = Field(default_factory=list)
    phone_numbers: list[str] = Field(default_factory=list)
    addresses: list[str] = Field(default_factory=list)

agent = Agent(
    model=OpenAIResponses(id="gpt-5.2"),
    output_schema=ExtractedData,
)

response = agent.run(f"Extract contact info from: {document_text}")

Classification

from typing import Literal
from pydantic import BaseModel, Field

class Classification(BaseModel):
    category: Literal["spam", "not_spam"]
    confidence: float = Field(ge=0, le=1)
    reasoning: str

agent = Agent(
    model=OpenAIResponses(id="gpt-5.2"),
    output_schema=Classification,
)

Multi-Item Generation

from pydantic import BaseModel

class BlogPost(BaseModel):
    title: str
    summary: str
    sections: list[str]

class BlogPostList(BaseModel):
    posts: list[BlogPost]

agent = Agent(
    model=OpenAIResponses(id="gpt-5.2"),
    output_schema=BlogPostList,
)

response = agent.run("Generate 3 blog post ideas about AI trends")
for post in response.content.posts:
    print(f"- {post.title}")

JSON Mode Fallback

For models without native structured output, enable JSON mode:
agent = Agent(
    model=SomeModel(),
    output_schema=MySchema,
    use_json_mode=True,
)
JSON mode instructs the model to respond in JSON but doesn’t guarantee schema compliance. Prefer models with native structured output support.