Skip to main content
This example demonstrates using additional guidelines to provide more specific evaluation criteria.
1

Add the following code to your Python file

agent_as_judge_with_guidelines.py
from typing import Optional

from agno.agent import Agent
from agno.db.sqlite import SqliteDb
from agno.eval.agent_as_judge import AgentAsJudgeEval, AgentAsJudgeResult
from agno.models.openai import OpenAIChat

# Setup database to persist eval results
db = SqliteDb(db_file="tmp/agent_as_judge_guidelines.db")

agent = Agent(
    model=OpenAIChat(id="gpt-4o"),
    instructions="You are a Tesla Model 3 product specialist. Provide detailed and helpful specifications.",
    db=db,
)

response = agent.run("What is the maximum speed of the Tesla Model 3?")

evaluation = AgentAsJudgeEval(
    name="Product Info Quality",
    model=OpenAIChat(id="gpt-4o-mini"),
    criteria="Response should be informative, well-formatted, and accurate for product specifications",
    scoring_strategy="numeric",
    threshold=8,
    additional_guidelines=[
        "Must include specific numbers with proper units (mph, km/h, etc.)",
        "Should provide context for different model variants if applicable",
        "Information should be technically accurate and complete",
    ],
    db=db,
)

result: Optional[AgentAsJudgeResult] = evaluation.run(
    input="What is the maximum speed?",
    output=str(response.content),
    print_results=True,
)

# Query database for stored results
print("Database Results:")
eval_runs = db.get_eval_runs()
print(f"Total evaluations stored: {len(eval_runs)}")
if eval_runs:
    latest = eval_runs[-1]
    print(f"Eval ID: {latest.run_id}")
    print(f"Additional guidelines used: {len(evaluation.additional_guidelines)}")

2

Create a virtual environment

Open the Terminal and create a python virtual environment.
python3 -m venv .venv
source .venv/bin/activate
3

Install libraries

pip install -U agno openai
4

Export your OpenAI API key

  export OPENAI_API_KEY="your_openai_api_key_here"
5

Run the example

python agent_as_judge_with_guidelines.py