1
Add the following code to your Python file
agent_as_judge_team.py
Copy
Ask AI
from typing import Optional
from agno.agent import Agent
from agno.db.sqlite import SqliteDb
from agno.eval.agent_as_judge import AgentAsJudgeEval, AgentAsJudgeResult
from agno.models.openai import OpenAIChat
from agno.team.team import Team
# Setup database to persist eval results
db = SqliteDb(db_file="tmp/agent_as_judge_team.db")
# Setup a team with researcher and writer
researcher = Agent(
name="Researcher",
role="Research and gather information",
model=OpenAIChat(id="gpt-4o"),
)
writer = Agent(
name="Writer",
role="Write clear and concise summaries",
model=OpenAIChat(id="gpt-4o"),
)
research_team = Team(
name="Research Team",
model=OpenAIChat("gpt-4o"),
members=[researcher, writer],
instructions=["First research the topic thoroughly, then write a clear summary."],
db=db,
)
response = research_team.run("Explain quantum computing")
evaluation = AgentAsJudgeEval(
name="Team Response Quality",
model=OpenAIChat(id="gpt-4o-mini"),
criteria="Response should be well-researched, clear, and comprehensive with good flow",
scoring_strategy="binary",
db=db,
)
result: Optional[AgentAsJudgeResult] = evaluation.run(
input="Explain quantum computing",
output=str(response.content),
print_results=True,
print_summary=True,
)
# Query database for stored results
print("Database Results:")
eval_runs = db.get_eval_runs()
print(f"Total evaluations stored: {len(eval_runs)}")
if eval_runs:
latest = eval_runs[-1]
print(f"Eval ID: {latest.run_id}")
print(f"Team: {research_team.name}")
2
Create a virtual environment
Open the
Terminal and create a python virtual environment.Copy
Ask AI
python3 -m venv .venv
source .venv/bin/activate
3
Install libraries
Copy
Ask AI
pip install -U agno openai
4
Export your OpenAI API key
Copy
Ask AI
export OPENAI_API_KEY="your_openai_api_key_here"
5
Run the example
Copy
Ask AI
python agent_as_judge_team.py