Skip to main content
User Profile captures structured profile fields about users: - Name and preferred name - Custom profile fields (when using extended schemas)
"""
User Profile: Agentic Mode
==========================
User Profile captures structured profile fields about users:
- Name and preferred name
- Custom profile fields (when using extended schemas)

AGENTIC mode gives the agent explicit tools to update profile fields.
The agent decides when to store information - you can see the tool calls.

Compare with: 1a_user_profile_always.py for automatic extraction.
See also: 2b_user_memory_agentic.py for unstructured observations.
"""

from agno.agent import Agent
from agno.db.postgres import PostgresDb
from agno.learn import LearningMachine, LearningMode, UserProfileConfig
from agno.models.openai import OpenAIResponses

# ---------------------------------------------------------------------------
# Create Agent
# ---------------------------------------------------------------------------

db = PostgresDb(db_url="postgresql+psycopg://ai:ai@localhost:5532/ai")

# AGENTIC mode: Agent gets profile tools and decides when to use them.
# You'll see tool calls like "update_user_profile" in responses.
agent = Agent(
    model=OpenAIResponses(id="gpt-5.2"),
    db=db,
    learning=LearningMachine(
        user_profile=UserProfileConfig(
            mode=LearningMode.AGENTIC,
        ),
    ),
    markdown=True,
)

# ---------------------------------------------------------------------------
# Run Demo
# ---------------------------------------------------------------------------

if __name__ == "__main__":
    user_id = "[email protected]"

    # Session 1: Agent explicitly updates profile
    print("\n" + "=" * 60)
    print("SESSION 1: Share information (watch for tool calls)")
    print("=" * 60 + "\n")

    agent.print_response(
        "Hi! I'm Robert Johnson, but everyone calls me Bob.",
        user_id=user_id,
        session_id="session_1",
        stream=True,
    )
    agent.learning_machine.user_profile_store.print(user_id=user_id)

    # Session 2: Agent uses stored profile
    print("\n" + "=" * 60)
    print("SESSION 2: Profile recalled in new session")
    print("=" * 60 + "\n")

    agent.print_response(
        "What should you call me?",
        user_id=user_id,
        session_id="session_2",
        stream=True,
    )
    agent.learning_machine.user_profile_store.print(user_id=user_id)

Run the Example

# Clone and setup repo
git clone https://github.com/agno-agi/agno.git
cd agno/cookbook/08_learning/01_basics

# Create and activate virtual environment
./scripts/demo_setup.sh
source .venvs/demo/bin/activate

python 1b_user_profile_agentic.py