Copy
Ask AI
"""
Entity Memory: Agentic Mode
===========================
Entity Memory stores knowledge about external things:
- Companies, people, projects
- Facts, events, relationships
- Shared context across users
AGENTIC mode gives the agent explicit tools to manage entities:
- search_entities, create_entity
- add_fact, add_event, add_relationship
The agent decides when to store and retrieve information.
Compare with: 5a_entity_memory_always.py for automatic extraction.
"""
from agno.agent import Agent
from agno.db.postgres import PostgresDb
from agno.learn import EntityMemoryConfig, LearningMachine, LearningMode
from agno.models.openai import OpenAIResponses
# ---------------------------------------------------------------------------
# Create Agent
# ---------------------------------------------------------------------------
db = PostgresDb(db_url="postgresql+psycopg://ai:ai@localhost:5532/ai")
# AGENTIC mode: Agent gets entity tools and decides when to use them.
# You'll see tool calls like "create_entity", "add_fact" in responses.
agent = Agent(
model=OpenAIResponses(id="gpt-5.2"),
db=db,
instructions=(
"You're a sales assistant tracking companies and contacts. "
"Be concise. Always search for existing entities before creating new ones."
),
learning=LearningMachine(
entity_memory=EntityMemoryConfig(
mode=LearningMode.AGENTIC,
),
),
markdown=True,
)
# ---------------------------------------------------------------------------
# Run Demo
# ---------------------------------------------------------------------------
if __name__ == "__main__":
from rich.pretty import pprint
user_id = "[email protected]"
# Session 1: Create entity
print("\n" + "=" * 60)
print("SESSION 1: Create entity (watch for tool calls)")
print("=" * 60 + "\n")
agent.print_response(
"Track Acme Corp - fintech startup in SF, 50 employees, "
"uses Python and Postgres. CTO is Jane Smith.",
user_id=user_id,
session_id="session_1",
stream=True,
)
print("\n--- Created Entities ---")
entities = agent.learning_machine.entity_memory_store.search(query="acme", limit=10)
pprint(entities)
# Session 2: Update same entity
print("\n" + "=" * 60)
print("SESSION 2: Update existing entity")
print("=" * 60 + "\n")
agent.print_response(
"Acme Corp just raised $50M Series B from Sequoia.",
user_id=user_id,
session_id="session_2",
stream=True,
)
print("\n--- Updated Entities ---")
entities = agent.learning_machine.entity_memory_store.search(query="acme", limit=10)
pprint(entities)
Run the Example
Copy
Ask AI
# Clone and setup repo
git clone https://github.com/agno-agi/agno.git
cd agno/cookbook/08_learning/01_basics
# Create and activate virtual environment
./scripts/demo_setup.sh
source .venvs/demo/bin/activate
python 5b_entity_memory_agentic.py