Copy
Ask AI
"""
PgVector Database
=================
Demonstrates PgVector-backed knowledge with sync, async, and async-batching flows.
"""
import asyncio
from agno.agent import Agent
from agno.knowledge.embedder.openai import OpenAIEmbedder
from agno.knowledge.knowledge import Knowledge
from agno.vectordb.pgvector import PgVector
# ---------------------------------------------------------------------------
# Setup
# ---------------------------------------------------------------------------
db_url = "postgresql+psycopg://ai:ai@localhost:5532/ai"
# ---------------------------------------------------------------------------
# Create Knowledge Base
# ---------------------------------------------------------------------------
def create_sync_knowledge() -> tuple[Knowledge, PgVector]:
vector_db = PgVector(table_name="vectors", db_url=db_url)
knowledge = Knowledge(
name="My PG Vector Knowledge Base",
description="This is a knowledge base that uses a PG Vector DB",
vector_db=vector_db,
)
return knowledge, vector_db
def create_async_knowledge(enable_batch: bool = False) -> tuple[Knowledge, PgVector]:
if enable_batch:
vector_db = PgVector(
table_name="recipes",
db_url=db_url,
embedder=OpenAIEmbedder(enable_batch=True),
)
else:
vector_db = PgVector(table_name="recipes", db_url=db_url)
knowledge = Knowledge(vector_db=vector_db)
return knowledge, vector_db
# ---------------------------------------------------------------------------
# Create Agent
# ---------------------------------------------------------------------------
def create_sync_agent(knowledge: Knowledge) -> Agent:
return Agent(
knowledge=knowledge,
search_knowledge=True,
read_chat_history=True,
)
def create_async_agent(knowledge: Knowledge) -> Agent:
return Agent(knowledge=knowledge)
# ---------------------------------------------------------------------------
# Run Agent
# ---------------------------------------------------------------------------
def run_sync() -> None:
knowledge, vector_db = create_sync_knowledge()
knowledge.insert(
name="Recipes",
url="https://agno-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf",
metadata={"doc_type": "recipe_book"},
)
agent = create_sync_agent(knowledge)
agent.print_response("How do I make pad thai?", markdown=True)
vector_db.delete_by_name("Recipes")
vector_db.delete_by_metadata({"doc_type": "recipe_book"})
async def run_async(enable_batch: bool = False) -> None:
knowledge, _ = create_async_knowledge(enable_batch=enable_batch)
agent = create_async_agent(knowledge)
await knowledge.ainsert(url="https://docs.agno.com/basics/agents/overview.md")
await agent.aprint_response("What is the purpose of an Agno Agent?", markdown=True)
if __name__ == "__main__":
run_sync()
asyncio.run(run_async(enable_batch=False))
asyncio.run(run_async(enable_batch=True))
Run the Example
Copy
Ask AI
# Clone and setup repo
git clone https://github.com/agno-agi/agno.git
cd agno/cookbook/07_knowledge/vector_db/pgvector
# Create and activate virtual environment
./scripts/demo_setup.sh
source .venvs/demo/bin/activate
# Optiona: Run PgVector (needs docker)
./cookbook/scripts/run_pgvector.sh
python pgvector_db.py