Copy
Ask AI
"""
Milvus Range Search
===================
Demonstrates Milvus range-search parameters (`radius`, `range_filter`) in sync and async calls.
"""
import asyncio
from agno.agent import Agent
from agno.knowledge.knowledge import Knowledge
from agno.vectordb.milvus import Milvus
# ---------------------------------------------------------------------------
# Setup
# ---------------------------------------------------------------------------
vector_db = Milvus(
collection="recipes_range_search",
uri="/tmp/milvus_range.db",
)
# ---------------------------------------------------------------------------
# Create Knowledge Base
# ---------------------------------------------------------------------------
knowledge = Knowledge(
name="My Milvus Range Search Knowledge Base",
description="This demonstrates range-based search with radius and range_filter parameters",
vector_db=vector_db,
)
# ---------------------------------------------------------------------------
# Create Agent
# ---------------------------------------------------------------------------
agent = Agent(knowledge=knowledge)
# ---------------------------------------------------------------------------
# Run Agent
# ---------------------------------------------------------------------------
async def main() -> None:
knowledge.insert(
name="Recipes",
url="https://agno-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf",
metadata={"doc_type": "recipe_book"},
)
print("=" * 80)
print("Example 1: Regular search (no radius/range_filter)")
print("=" * 80)
agent.print_response("How to make Tom Kha Gai", markdown=True)
print("\n" + "=" * 80)
print("Example 2: Search with radius parameter (minimum similarity threshold)")
print("=" * 80)
query = "How to make Thai curry"
results = knowledge.vector_db.search(
query=query,
limit=5,
search_params={"radius": 0.3},
)
print(f"\nFound {len(results)} documents with similarity >= 0.3:")
for i, doc in enumerate(results, 1):
print(f"\n{i}. {doc.name}")
print(f" Content preview: {doc.content[:100]}...")
print("\n" + "=" * 80)
print("Example 3: Search with radius and range_filter (similarity range)")
print("=" * 80)
results_with_range = knowledge.vector_db.search(
query=query,
limit=5,
search_params={"radius": 0.3, "range_filter": 0.8},
)
print(
f"\nFound {len(results_with_range)} documents with similarity in range [0.3, 0.8]:"
)
for i, doc in enumerate(results_with_range, 1):
print(f"\n{i}. {doc.name}")
print(f" Content preview: {doc.content[:100]}...")
print("\n" + "=" * 80)
print("Example 4: Async search with range parameters")
print("=" * 80)
async_results = await knowledge.vector_db.async_search(
query="Thai desserts",
limit=3,
search_params={"radius": 0.3, "range_filter": 0.9},
)
print(f"\nAsync search found {len(async_results)} documents:")
for i, doc in enumerate(async_results, 1):
print(f"\n{i}. {doc.name}")
print(f" Content preview: {doc.content[:100]}...")
print("\n" + "=" * 80)
print("Cleaning up...")
print("=" * 80)
vector_db.delete_by_metadata({"doc_type": "recipe_book"})
print("Cleaned up successfully!")
if __name__ == "__main__":
asyncio.run(main())
Run the Example
Copy
Ask AI
# Clone and setup repo
git clone https://github.com/agno-agi/agno.git
cd agno/cookbook/07_knowledge/vector_db/milvus_db
# Create and activate virtual environment
./scripts/demo_setup.sh
source .venvs/demo/bin/activate
python milvus_db_range_search.py