Copy
Ask AI
"""
ClickHouse Database
===================
Demonstrates ClickHouse-backed knowledge with sync, async, and async-batching flows.
"""
import asyncio
from agno.agent import Agent
from agno.knowledge.embedder.openai import OpenAIEmbedder
from agno.knowledge.knowledge import Knowledge
from agno.models.openai import OpenAIChat
from agno.vectordb.clickhouse import Clickhouse
# ---------------------------------------------------------------------------
# Setup
# ---------------------------------------------------------------------------
HOST = "localhost"
PORT = 8123
USERNAME = "ai"
PASSWORD = "ai"
# ---------------------------------------------------------------------------
# Create Knowledge Base
# ---------------------------------------------------------------------------
def create_sync_knowledge() -> tuple[Knowledge, Clickhouse]:
vector_db = Clickhouse(
table_name="recipe_documents",
host=HOST,
port=PORT,
username=USERNAME,
password=PASSWORD,
)
knowledge = Knowledge(
name="My Clickhouse Knowledge Base",
description="This is a knowledge base that uses a Clickhouse DB",
vector_db=vector_db,
)
return knowledge, vector_db
def create_async_knowledge(enable_batch: bool = False) -> Knowledge:
if enable_batch:
vector_db = Clickhouse(
table_name="documents",
host=HOST,
port=PORT,
username=USERNAME,
password=PASSWORD,
embedder=OpenAIEmbedder(enable_batch=True),
)
else:
vector_db = Clickhouse(
table_name="documents",
host=HOST,
port=PORT,
username=USERNAME,
password=PASSWORD,
)
return Knowledge(vector_db=vector_db)
# ---------------------------------------------------------------------------
# Create Agent
# ---------------------------------------------------------------------------
def create_sync_agent(knowledge: Knowledge) -> Agent:
return Agent(
knowledge=knowledge,
search_knowledge=True,
read_chat_history=True,
)
def create_async_agent(knowledge: Knowledge, enable_batch: bool = False) -> Agent:
if enable_batch:
return Agent(
model=OpenAIChat(id="gpt-5.2"),
knowledge=knowledge,
search_knowledge=True,
read_chat_history=True,
)
return Agent(
knowledge=knowledge,
search_knowledge=True,
read_chat_history=True,
)
# ---------------------------------------------------------------------------
# Run Agent
# ---------------------------------------------------------------------------
def run_sync() -> None:
knowledge, vector_db = create_sync_knowledge()
knowledge.insert(
name="Recipes",
url="https://agno-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf",
metadata={"doc_type": "recipe_book"},
)
agent = create_sync_agent(knowledge)
agent.print_response("How do I make pad thai?", markdown=True)
vector_db.delete_by_name("Recipes")
vector_db.delete_by_metadata({"doc_type": "recipe_book"})
async def run_async(enable_batch: bool = False) -> None:
knowledge = create_async_knowledge(enable_batch=enable_batch)
agent = create_async_agent(knowledge, enable_batch=enable_batch)
if enable_batch:
await knowledge.ainsert(path="cookbook/07_knowledge/testing_resources/cv_1.pdf")
await agent.aprint_response(
"What can you tell me about the candidate and what are his skills?",
markdown=True,
)
else:
await knowledge.ainsert(url="https://docs.agno.com/basics/agents/overview.md")
await agent.aprint_response(
"What is the purpose of an Agno Agent?", markdown=True
)
if __name__ == "__main__":
run_sync()
asyncio.run(run_async(enable_batch=False))
asyncio.run(run_async(enable_batch=True))
Run the Example
Copy
Ask AI
# Clone and setup repo
git clone https://github.com/agno-agi/agno.git
cd agno/cookbook/07_knowledge/vector_db/clickhouse_db
# Create and activate virtual environment
./scripts/demo_setup.sh
source .venvs/demo/bin/activate
python clickhouse.py