from agno.agent import Agent
from agno.knowledge.embedder.openai import OpenAIEmbedder
from agno.knowledge.knowledge import Knowledge
from agno.knowledge.reranker import CohereReranker
from agno.models.openai import OpenAIChat
from agno.vectordb.lancedb import LanceDb, SearchType
knowledge = Knowledge(
vector_db=LanceDb(
uri="tmp/lancedb",
table_name="agno_docs",
search_type=SearchType.hybrid,
embedder=OpenAIEmbedder(
id="text-embedding-3-small"
),
reranker=CohereReranker(
model="rerank-multilingual-v3.0"
),
),
)
knowledge.add_content(
name="Agno Docs", url="https://docs.agno.com/introduction.md"
)
agent = Agent(
model=OpenAIChat(id="gpt-5-mini"),
knowledge=knowledge,
markdown=True,
)
if __name__ == "__main__":
# Load the knowledge base, comment after first run
# agent.knowledge.load(recreate=True)
agent.print_response("What are Agno's key features?")
Create a virtual environment
Terminal
and create a python virtual environment.python3 -m venv .venv
source .venv/bin/activate
Set your API keys
export OPENAI_API_KEY=xxx
export COHERE_API_KEY=xxx
Install libraries
pip install -U openai lancedb tantivy pypdf sqlalchemy agno cohere
Run Agent
python cookbook/agents/rag/agentic_rag_with_reranking.py