from agno.agent import Agent
from agno.knowledge.embedder.openai import OpenAIEmbedder
from agno.knowledge.knowledge import Knowledge
from agno.models.openai import OpenAIChat
from agno.vectordb.pgvector import PgVector, SearchType
db_url = "postgresql+psycopg://ai:ai@localhost:5532/ai"
knowledge = Knowledge(
# Use PgVector as the vector database and store embeddings in the `ai.recipes` table
vector_db=PgVector(
table_name="recipes",
db_url=db_url,
search_type=SearchType.hybrid,
embedder=OpenAIEmbedder(id="text-embedding-3-small"),
),
)
knowledge.add_content(
url="https://agno-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf"
)
agent = Agent(
model=OpenAIChat(id="gpt-5-mini"),
knowledge=knowledge,
search_knowledge=True,
markdown=True,
)
agent.print_response(
"How do I make chicken and galangal in coconut milk soup", stream=True
)
Create a virtual environment
Terminal
and create a python virtual environment.python3 -m venv .venv
source .venv/bin/activate
Set your API key
export OPENAI_API_KEY=xxx
Install libraries
pip install -U openai sqlalchemy psycopg pgvector agno
Run PgVector
docker run -d \
-e POSTGRES_DB=ai \
-e POSTGRES_USER=ai \
-e POSTGRES_PASSWORD=ai \
-e PGDATA=/var/lib/postgresql/data/pgdata \
-v pgvolume:/var/lib/postgresql/data \
-p 5532:5432 \
--name pgvector \
agnohq/pgvector:16
Run Agent
python cookbook/agents/rag/agentic_rag_pgvector.py