Examples
- Examples
- Getting Started
- Agents
- Teams
- Workflows
- Applications
- Streamlit Apps
- Evals
Agent Concepts
- Reasoning
- Multimodal
- RAG
- User Control Flows
- Knowledge
- Knowledge Filters
- ArXiv Knowledge Base
- Combined Knowledge Base
- CSV Knowledge Base
- CSV URL Knowledge Base
- Document Knowledge Base
- DOCX Knowledge Base
- Memory
- Async
- Hybrid Search
- Storage
- Tools
- Vector Databases
- Context
- Embedders
- Agent State
- Observability
- Miscellaneous
Models
- Anthropic
- AWS Bedrock
- AWS Bedrock Claude
- Azure AI Foundry
- Azure OpenAI
- Cerebras
- Cerebras OpenAI
- Cohere
- DeepInfra
- DeepSeek
- Fireworks
- Gemini
- Groq
- Hugging Face
- IBM
- LM Studio
- LiteLLM
- LiteLLM OpenAI
- Meta
- Mistral
- NVIDIA
- Ollama
- OpenAI
- Perplexity
- Together
- XAI
- Vercel
Pdf-Url
Agentic filtering with Pdf-Url
Learn how to do agentic knowledge filtering using Pdf-Url documents with user-specific metadata.
Code
from agno.agent import Agent
from agno.knowledge.pdf_url import PDFUrlKnowledgeBase
from agno.vectordb.lancedb import LanceDb
# Initialize LanceDB
# By default, it stores data in /tmp/lancedb
vector_db = LanceDb(
table_name="recipes",
uri="tmp/lancedb", # You can change this path to store data elsewhere
)
# Step 1: Initialize knowledge base with documents and metadata
# ------------------------------------------------------------------------------
# When initializing the knowledge base, we can attach metadata that will be used for filtering
# This metadata can include user IDs, document types, dates, or any other attributes
knowledge_base = PDFUrlKnowledgeBase(
urls=[
{
"url": "https://agno-public.s3.amazonaws.com/recipes/thai_recipes_short.pdf",
"metadata": {
"cuisine": "Thai",
"source": "Thai Cookbook",
"region": "Southeast Asia",
},
},
{
"url": "https://agno-public.s3.amazonaws.com/recipes/cape_recipes_short_2.pdf",
"metadata": {
"cuisine": "Cape",
"source": "Cape Cookbook",
"region": "South Africa",
},
},
],
vector_db=vector_db,
)
# Load all documents into the vector database
knowledge_base.load(recreate=True)
# Step 2: Query the knowledge base with Agent using filters from query automatically
# -----------------------------------------------------------------------------------
# Enable agentic filtering
agent = Agent(
knowledge=knowledge_base,
search_knowledge=True,
enable_agentic_knowledge_filters=True,
)
# Query for Jordan Mitchell's experience and skills with filters in query so that Agent can automatically pick them up
agent.print_response(
"How to make Pad Thai, refer from document with cuisine Thai and source Thai Cookbook",
markdown=True,
)
Usage
1
Install libraries
pip install -U agno openai lancedb
2
Run the example
python cookbook/agent_concepts/knowledge/filters/pdf_url/agentic_filtering.py
Was this page helpful?
Assistant
Responses are generated using AI and may contain mistakes.