Learn how to do agentic knowledge filtering using Pdf-Url documents with user-specific metadata.
from agno.agent import Agent
from agno.knowledge.pdf_url import PDFUrlKnowledgeBase
from agno.vectordb.lancedb import LanceDb
# Initialize LanceDB
# By default, it stores data in /tmp/lancedb
vector_db = LanceDb(
table_name="recipes",
uri="tmp/lancedb", # You can change this path to store data elsewhere
)
# Step 1: Initialize knowledge base with documents and metadata
# ------------------------------------------------------------------------------
# When initializing the knowledge base, we can attach metadata that will be used for filtering
# This metadata can include user IDs, document types, dates, or any other attributes
knowledge_base = PDFUrlKnowledgeBase(
urls=[
{
"url": "https://agno-public.s3.amazonaws.com/recipes/thai_recipes_short.pdf",
"metadata": {
"cuisine": "Thai",
"source": "Thai Cookbook",
"region": "Southeast Asia",
},
},
{
"url": "https://agno-public.s3.amazonaws.com/recipes/cape_recipes_short_2.pdf",
"metadata": {
"cuisine": "Cape",
"source": "Cape Cookbook",
"region": "South Africa",
},
},
],
vector_db=vector_db,
)
# Load all documents into the vector database
knowledge_base.load(recreate=True)
# Step 2: Query the knowledge base with Agent using filters from query automatically
# -----------------------------------------------------------------------------------
# Enable agentic filtering
agent = Agent(
knowledge=knowledge_base,
search_knowledge=True,
enable_agentic_knowledge_filters=True,
)
# Query for Jordan Mitchell's experience and skills with filters in query so that Agent can automatically pick them up
agent.print_response(
"How to make Pad Thai, refer from document with cuisine Thai and source Thai Cookbook",
markdown=True,
)
Install libraries
pip install -U agno openai lancedb
Run the example
python cookbook/agent_concepts/knowledge/filters/pdf_url/agentic_filtering.py
Was this page helpful?