Knowledge
Combined Knowledge Base
Examples
- Introduction
- Getting Started
- Agents
- Workflows
- Applications
Agent Concepts
- Multimodal
- RAG
- Knowledge
- Memory
- Teams
- Async
- Hybrid Search
- Storage
- Tools
- Vector Databases
- Embedders
Models
- Anthropic
- AWS Bedrock Claude
- Azure OpenAI
- Cohere
- DeepSeek
- Fireworks
- Gemini
- Groq
- Hugging Face
- Mistral
- NVIDIA
- Ollama
- OpenAI
- Together
- Vertex AI
- xAI
Knowledge
Combined Knowledge Base
Code
from pathlib import Path
from agno.agent import Agent
from agno.knowledge.combined import CombinedKnowledgeBase
from agno.knowledge.csv import CSVKnowledgeBase
from agno.knowledge.pdf import PDFKnowledgeBase
from agno.knowledge.pdf_url import PDFUrlKnowledgeBase
from agno.knowledge.website import WebsiteKnowledgeBase
from agno.vectordb.pgvector import PgVector
db_url = "postgresql+psycopg://ai:ai@localhost:5532/ai"
# Create CSV knowledge base
csv_kb = CSVKnowledgeBase(
path=Path("data/csvs"),
vector_db=PgVector(
table_name="csv_documents",
db_url=db_url,
),
)
# Create PDF URL knowledge base
pdf_url_kb = PDFUrlKnowledgeBase(
urls=["https://agno-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf"],
vector_db=PgVector(
table_name="pdf_documents",
db_url=db_url,
),
)
# Create Website knowledge base
website_kb = WebsiteKnowledgeBase(
urls=["https://docs.agno.com/introduction"],
max_links=10,
vector_db=PgVector(
table_name="website_documents",
db_url=db_url,
),
)
# Create Local PDF knowledge base
local_pdf_kb = PDFKnowledgeBase(
path="data/pdfs",
vector_db=PgVector(
table_name="pdf_documents",
db_url=db_url,
),
)
# Combine knowledge bases
knowledge_base = CombinedKnowledgeBase(
sources=[
csv_kb,
pdf_url_kb,
website_kb,
local_pdf_kb,
],
vector_db=PgVector(
table_name="combined_documents",
db_url=db_url,
),
)
# Initialize the Agent with the combined knowledge base
agent = Agent(
knowledge=knowledge_base,
search_knowledge=True,
)
knowledge_base.load(recreate=False)
# Use the agent
agent.print_response("Ask me about something from the knowledge base", markdown=True)
Usage
1
Create a virtual environment
Open the Terminal
and create a python virtual environment.
2
Install libraries
pip install -U sqlalchemy 'psycopg[binary]' pgvector pypdf agno
3
Run PgVector
docker run -d \
-e POSTGRES_DB=ai \
-e POSTGRES_USER=ai \
-e POSTGRES_PASSWORD=ai \
-e PGDATA=/var/lib/postgresql/data/pgdata \
-v pgvolume:/var/lib/postgresql/data \
-p 5532:5432 \
--name pgvector \
agnohq/pgvector:16
4
Run Agent