Learn how to filter knowledge base searches using Pdf documents with user-specific metadata in SurrealDB.
from agno.agent import Agent
from agno.knowledge.pdf import PDFKnowledgeBase
from agno.utils.media import (
SampleDataFileExtension,
download_knowledge_filters_sample_data,
)
from agno.vectordb.surrealdb import SurrealDb
from surrealdb import Surreal
# SurrealDB connection parameters
SURREALDB_URL = "ws://localhost:8000"
SURREALDB_USER = "root"
SURREALDB_PASSWORD = "root"
SURREALDB_NAMESPACE = "test"
SURREALDB_DATABASE = "test"
# Download all sample CVs and get their paths
downloaded_cv_paths = download_knowledge_filters_sample_data(
num_files=5, file_extension=SampleDataFileExtension.PDF
)
# Create a client
client = Surreal(url=SURREALDB_URL)
client.signin({"username": SURREALDB_USER, "password": SURREALDB_PASSWORD})
client.use(namespace=SURREALDB_NAMESPACE, database=SURREALDB_DATABASE)
vector_db = SurrealDb(
client=client,
collection="recipes", # Collection name for storing documents
efc=150, # HNSW construction time/accuracy trade-off
m=12, # HNSW max number of connections per element
search_ef=40, # HNSW search time/accuracy trade-off
)
# Step 1: Initialize knowledge base with documents and metadata
# ------------------------------------------------------------------------------
# When initializing the knowledge base, we can attach metadata that will be used for filtering
# This metadata can include user IDs, document types, dates, or any other attributes
knowledge_base = PDFKnowledgeBase(
path=[
{
"path": downloaded_cv_paths[0],
"metadata": {
"user_id": "jordan_mitchell",
"document_type": "cv",
"year": 2025,
},
},
{
"path": downloaded_cv_paths[1],
"metadata": {
"user_id": "taylor_brooks",
"document_type": "cv",
"year": 2025,
},
},
{
"path": downloaded_cv_paths[2],
"metadata": {
"user_id": "morgan_lee",
"document_type": "cv",
"year": 2025,
},
},
{
"path": downloaded_cv_paths[3],
"metadata": {
"user_id": "casey_jordan",
"document_type": "cv",
"year": 2025,
},
},
{
"path": downloaded_cv_paths[4],
"metadata": {
"user_id": "alex_rivera",
"document_type": "cv",
"year": 2025,
},
},
],
vector_db=vector_db,
)
# Load all documents into the vector database
knowledge_base.load(recreate=True)
# Step 2: Query the knowledge base with different filter combinations
# ------------------------------------------------------------------------------
# Option 1: Filters on the Agent
# Initialize the Agent with the knowledge base and filters
agent = Agent(
knowledge=knowledge_base,
search_knowledge=True,
debug_mode=True,
)
agent.print_response(
"Tell me about Jordan Mitchell's experience and skills",
knowledge_filters={"user_id": "jordan_mitchell"},
markdown=True,
)
Install libraries
pip install -U agno surrealdb openai
Run the example
python cookbook/agent_concepts/knowledge/filters/filtering_surrealdb.py
Was this page helpful?