import asyncio
from agno.knowledge.embedder.mistral import MistralEmbedder
from agno.knowledge.knowledge import Knowledge
from agno.vectordb.pgvector import PgVector
embeddings = MistralEmbedder().get_embedding(
"The quick brown fox jumps over the lazy dog."
)
# Print the embeddings and their dimensions
print(f"Embeddings: {embeddings[:5]}")
print(f"Dimensions: {len(embeddings)}")
# Example usage:
knowledge = Knowledge(
vector_db=PgVector(
db_url="postgresql+psycopg://ai:ai@localhost:5532/ai",
table_name="mistral_embeddings",
embedder=MistralEmbedder(),
),
max_results=2,
)
asyncio.run(
knowledge.add_content_async(
path="cookbook/knowledge/testing_resources/cv_1.pdf",
)
)
Create a virtual environment
Terminal
and create a python virtual environment.python3 -m venv .venv
source .venv/bin/activate
Set your API key
export MISTRAL_API_KEY=xxx
Install libraries
pip install -U sqlalchemy psycopg pgvector mistralai agno
Run PgVector
docker run -d \
-e POSTGRES_DB=ai \
-e POSTGRES_USER=ai \
-e POSTGRES_PASSWORD=ai \
-e PGDATA=/var/lib/postgresql/data/pgdata \
-v pgvolume:/var/lib/postgresql/data \
-p 5532:5432 \
--name pgvector \
agnohq/pgvector:16
Run Agent
python cookbook/knowledge/embedders/mistral_embedder.py