Code

cookbook/knowledge/embedders/aws_bedrock_embedder.py
import asyncio
from agno.knowledge.embedder.aws_bedrock import AwsBedrockEmbedder
from agno.knowledge.knowledge import Knowledge
from agno.knowledge.reader.pdf_reader import PDFReader
from agno.vectordb.pgvector import PgVector

embeddings = AwsBedrockEmbedder().get_embedding(
    "The quick brown fox jumps over the lazy dog."
)
# Print the embeddings and their dimensions
print(f"Embeddings: {embeddings[:5]}")
print(f"Dimensions: {len(embeddings)}")

# Example usage:
knowledge = Knowledge(
    vector_db=PgVector(
        table_name="recipes",
        db_url="postgresql+psycopg://ai:ai@localhost:5532/ai",
        embedder=AwsBedrockEmbedder(),
    ),
)

knowledge.add_content(
    url="https://agno-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf",
    reader=PDFReader(
        chunk_size=2048
    ),  # Required because cohere has a fixed size of 2048
)

Usage

1

Create a virtual environment

Open the Terminal and create a python virtual environment.
python3 -m venv .venv
source .venv/bin/activate
2

Set your API key

export AWS_ACCESS_KEY_ID=xxx
export AWS_SECRET_ACCESS_KEY=xxx
export AWS_REGION=xxx
3

Install libraries

pip install -U sqlalchemy psycopg pgvector boto3 agno
4

Run PgVector

docker run -d \
  -e POSTGRES_DB=ai \
  -e POSTGRES_USER=ai \
  -e POSTGRES_PASSWORD=ai \
  -e PGDATA=/var/lib/postgresql/data/pgdata \
  -v pgvolume:/var/lib/postgresql/data \
  -p 5532:5432 \
  --name pgvector \
  agno/pgvector:16
5

Run Agent

python cookbook/knowledge/embedders/azure_embedder.py