from agno.agent import Agent
from agno.db.postgres import PostgresDb
from agno.models.openai import OpenAIChat
from agno.tools.duckduckgo import DuckDuckGoTools
from agno.utils import pprint
agent = Agent(
model=OpenAIChat(id="gpt-5-mini"),
tools=[DuckDuckGoTools(stock_price=True)],
markdown=True,
session_id="test-session-metrics",
db=PostgresDb(db_url="postgresql+psycopg://ai:ai@localhost:5532/ai"),
)
# Get the run response directly from the non-streaming call
run_response = agent.run("What is the stock price of NVDA")
print("Tool execution completed successfully!")
# Print metrics per message
if run_response and run_response.messages:
for message in run_response.messages:
if message.role == "assistant":
if message.content:
print(
f"Message: {message.content[:100]}..."
) # Truncate for readability
elif message.tool_calls:
print(f"Tool calls: {len(message.tool_calls)} tool call(s)")
print("---" * 5, "Message Metrics", "---" * 5)
if message.metrics:
pprint(message.metrics)
else:
print("No metrics available for this message")
print("---" * 20)
# Print the run metrics
print("---" * 5, "Run Metrics", "---" * 5)
if run_response and run_response.metrics:
pprint(run_response.metrics)
else:
print("No run metrics available")
# Print the session metrics
print("---" * 5, "Session Metrics", "---" * 5)
try:
session_metrics = agent.get_session_metrics()
if session_metrics:
pprint(session_metrics)
else:
print("No session metrics available")
except Exception as e:
print(f"Error getting session metrics: {e}")
Create a virtual environment
Terminal
and create a python virtual environment.python3 -m venv .venv
source .venv/bin/activate
Install libraries
pip install -U agno openai ddgs psycopg
Setup PostgreSQL
# Make sure PostgreSQL is running
# Update connection string in the code as needed
Run Agent
python cookbook/agents/other/agent_metrics.py