This example demonstrates how to collect special token metrics including audio, cached, and reasoning tokens. It shows different types of advanced metrics available when working with various OpenAI models.

Code

cookbook/agents/other/agent_extra_metrics.py
"""Show special token metrics like audio, cached and reasoning tokens"""

import requests
from agno.agent import Agent
from agno.media import Audio
from agno.models.openai import OpenAIChat
from agno.utils.pprint import pprint_run_response

# Fetch the audio file and convert it to a base64 encoded string
url = "https://openaiassets.blob.core.windows.net/$web/API/docs/audio/alloy.wav"
response = requests.get(url)
response.raise_for_status()
wav_data = response.content

agent = Agent(
    model=OpenAIChat(
        id="gpt-5-mini-audio-preview",
        modalities=["text", "audio"],
        audio={"voice": "sage", "format": "wav"},
    ),
    markdown=True,
)
run_response = agent.run(
    "What's in these recording?",
    audio=[Audio(content=wav_data, format="wav")],
)
pprint_run_response(run_response)
# Showing input audio, output audio and total audio tokens metrics
print(f"Input audio tokens: {run_response.metrics.audio_input_tokens}")
print(f"Output audio tokens: {run_response.metrics.audio_output_tokens}")
print(f"Audio tokens: {run_response.metrics.audio_total_tokens}")

agent = Agent(
    model=OpenAIChat(id="gpt-5-mini"),
    markdown=True,
    telemetry=False,
)
run_response = agent.run(
    "Solve the trolley problem. Evaluate multiple ethical frameworks. Include an ASCII diagram of your solution.",
    stream=False,
)
pprint_run_response(run_response)
# Showing reasoning tokens metrics
print(f"Reasoning tokens: {run_response.metrics.reasoning_tokens}")

agent = Agent(model=OpenAIChat(id="gpt-5-mini"), markdown=True, telemetry=False)
agent.run("Share a 2 sentence horror story" * 150)
run_response = agent.run("Share a 2 sentence horror story" * 150)
# Showing cached tokens metrics
print(f"Cached tokens: {run_response.metrics.cache_read_tokens}")

Usage

1

Create a virtual environment

Open the Terminal and create a python virtual environment.
python3 -m venv .venv
source .venv/bin/activate
2

Install libraries

pip install -U agno openai requests
3

Run Agent

python cookbook/agents/other/agent_extra_metrics.py