This example demonstrates how to implement Agentic RAG with Reasoning Tools, combining knowledge base search with structured reasoning capabilities for more sophisticated responses.

Code

cookbook/agents/agentic_search/agentic_rag_with_reasoning.py
"""This cookbook shows how to implement Agentic RAG with Reasoning.
1. Run: `pip install agno anthropic cohere lancedb tantivy sqlalchemy` to install the dependencies
2. Export your ANTHROPIC_API_KEY and CO_API_KEY
3. Run: `python cookbook/agent_concepts/agentic_search/agentic_rag_with_reasoning.py` to run the agent
"""

import asyncio

from agno.agent import Agent
from agno.knowledge.embedder.cohere import CohereEmbedder
from agno.knowledge.knowledge import Knowledge
from agno.knowledge.reranker import CohereReranker
from agno.models.anthropic import Claude
from agno.tools.reasoning import ReasoningTools
from agno.vectordb.lancedb import LanceDb, SearchType

knowledge = Knowledge(
    # Use LanceDB as the vector database, store embeddings in the `agno_docs` table
    vector_db=LanceDb(
        uri="tmp/lancedb",
        table_name="agno_docs",
        search_type=SearchType.hybrid,
        embedder=CohereEmbedder(id="embed-v4.0"),
        reranker=CohereReranker(model="rerank-v3.5"),
    ),
)

asyncio.run(
    knowledge.add_contents_async(urls=["https://docs.agno.com/introduction/agents.md"])
)

agent = Agent(
    model=Claude(id="claude-sonnet-4-20250514"),
    # Agentic RAG is enabled by default when `knowledge` is provided to the Agent.
    knowledge=knowledge,
    # search_knowledge=True gives the Agent the ability to search on demand
    # search_knowledge is True by default
    search_knowledge=True,
    tools=[ReasoningTools(add_instructions=True)],
    instructions=[
        "Include sources in your response.",
        "Always search your knowledge before answering the question.",
    ],
    markdown=True,
)

if __name__ == "__main__":
    agent.print_response(
        "What are Agents?",
        stream=True,
        show_full_reasoning=True,
        stream_intermediate_steps=True,
    )

Usage

1

Create a virtual environment

Open the Terminal and create a python virtual environment.
python3 -m venv .venv
source .venv/bin/activate
2

Install libraries

pip install -U agno anthropic cohere lancedb tantivy sqlalchemy
3

Run Agent

python cookbook/agents/agentic_search/agentic_rag_with_reasoning.py