This example demonstrates how to implement Agentic RAG using Hybrid Search and Reranking with LanceDB, Cohere embeddings, and Cohere reranking for enhanced document retrieval and response generation.
"""This cookbook shows how to implement Agentic RAG using Hybrid Search and Reranking.1. Run: `pip install agno anthropic cohere lancedb tantivy sqlalchemy` to install the dependencies2. Export your ANTHROPIC_API_KEY and CO_API_KEY3. Run: `python cookbook/agent_concepts/agentic_search/agentic_rag.py` to run the agent"""import asynciofrom agno.agent import Agentfrom agno.knowledge.embedder.cohere import CohereEmbedderfrom agno.knowledge.knowledge import Knowledgefrom agno.knowledge.reranker.cohere import CohereRerankerfrom agno.models.anthropic import Claudefrom agno.vectordb.lancedb import LanceDb, SearchTypeknowledge = Knowledge( # Use LanceDB as the vector database, store embeddings in the `agno_docs` table vector_db=LanceDb( uri="tmp/lancedb", table_name="agno_docs", search_type=SearchType.hybrid, embedder=CohereEmbedder(id="embed-v4.0"), reranker=CohereReranker(model="rerank-v3.5"), ),)asyncio.run( knowledge.add_content_async(url="https://docs.agno.com/introduction/agents.md"))agent = Agent( model=Claude(id="claude-3-7-sonnet-latest"), # Agentic RAG is enabled by default when `knowledge` is provided to the Agent. knowledge=knowledge, # search_knowledge=True gives the Agent the ability to search on demand # search_knowledge is True by default search_knowledge=True, instructions=[ "Include sources in your response.", "Always search your knowledge before answering the question.", ], markdown=True,)if __name__ == "__main__": agent.print_response("What are Agents?", stream=True)