- Run:
./cookbook/run_pgvector.shto start a postgres container with pgvector.
Copy
Ask AI
"""
Traditional Rag
=============================
1. Run: `./cookbook/run_pgvector.sh` to start a postgres container with pgvector.
"""
from agno.agent import Agent
from agno.knowledge.embedder.openai import OpenAIEmbedder
from agno.knowledge.knowledge import Knowledge
from agno.models.openai import OpenAIResponses
from agno.vectordb.pgvector import PgVector, SearchType
db_url = "postgresql+psycopg://ai:ai@localhost:5532/ai"
knowledge = Knowledge(
# Use PgVector as the vector database and store embeddings in the `ai.recipes` table
vector_db=PgVector(
table_name="recipes",
db_url=db_url,
search_type=SearchType.hybrid,
embedder=OpenAIEmbedder(id="text-embedding-3-small"),
),
)
# ---------------------------------------------------------------------------
# Create Agent
# ---------------------------------------------------------------------------
agent = Agent(
model=OpenAIResponses(id="gpt-5.2"),
knowledge=knowledge,
# Enable RAG by adding context from the `knowledge` to the user prompt.
add_knowledge_to_context=True,
# Set as False because Agents default to `search_knowledge=True`
search_knowledge=False,
markdown=True,
)
# ---------------------------------------------------------------------------
# Run Agent
# ---------------------------------------------------------------------------
if __name__ == "__main__":
knowledge.insert(url="https://agno-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf")
agent.print_response(
"How do I make chicken and galangal in coconut milk soup", stream=True
)
Run the Example
Copy
Ask AI
# Clone and setup repo
git clone https://github.com/agno-agi/agno.git
cd agno/cookbook/02_agents/07_knowledge
# Create and activate virtual environment
./scripts/demo_setup.sh
source .venvs/demo/bin/activate
# Optiona: Run PgVector (needs docker)
./cookbook/scripts/run_pgvector.sh
python traditional_rag.py