- Run:
uv pip install openai agno cohere lancedb tantivy sqlalchemyto install the dependencies.
Copy
Ask AI
"""
Agentic Rag With Reranking
=============================
1. Run: `uv pip install openai agno cohere lancedb tantivy sqlalchemy` to install the dependencies.
"""
from agno.agent import Agent
from agno.knowledge.embedder.openai import OpenAIEmbedder
from agno.knowledge.knowledge import Knowledge
from agno.knowledge.reranker.cohere import CohereReranker
from agno.models.openai import OpenAIResponses
from agno.vectordb.lancedb import LanceDb, SearchType
knowledge = Knowledge(
# Use LanceDB as the vector database and store embeddings in the `agno_docs` table
vector_db=LanceDb(
uri="tmp/lancedb",
table_name="agno_docs",
search_type=SearchType.hybrid,
embedder=OpenAIEmbedder(
id="text-embedding-3-small"
), # Use OpenAI for embeddings
reranker=CohereReranker(
model="rerank-multilingual-v3.0"
), # Use Cohere for reranking
),
)
# ---------------------------------------------------------------------------
# Create Agent
# ---------------------------------------------------------------------------
agent = Agent(
model=OpenAIResponses(id="gpt-5.2"),
# Agentic RAG is enabled by default when `knowledge` is provided to the Agent.
knowledge=knowledge,
markdown=True,
)
# ---------------------------------------------------------------------------
# Run Agent
# ---------------------------------------------------------------------------
if __name__ == "__main__":
knowledge.insert(name="Agno Docs", url="https://docs.agno.com/introduction.md")
agent.print_response("What are Agno's key features?")
Run the Example
Copy
Ask AI
# Clone and setup repo
git clone https://github.com/agno-agi/agno.git
cd agno/cookbook/02_agents/07_knowledge
# Create and activate virtual environment
./scripts/demo_setup.sh
source .venvs/demo/bin/activate
python agentic_rag_with_reranking.py