Code
Copy
Ask AI
from agno.agent import Agent
from agno.knowledge.knowledge import Knowledge
from agno.utils.media import (
SampleDataFileExtension,
download_knowledge_filters_sample_data,
)
from agno.vectordb.pgvector import PgVector
# Download all sample CVs and get their paths
downloaded_cv_paths = download_knowledge_filters_sample_data(
num_files=5, file_extension=SampleDataFileExtension.PDF
)
# Initialize PgVector
db_url = "postgresql+psycopg://ai:ai@localhost:5532/ai"
vector_db = PgVector(table_name="recipes", db_url=db_url)
# Step 1: Initialize knowledge with documents and metadata
# ------------------------------------------------------------------------------
# When initializing the knowledge, we can attach metadata that will be used for filtering
# This metadata can include user IDs, document types, dates, or any other attributes
knowledge = Knowledge(
name="PgVector Knowledge Base",
description="A knowledge base for PgVector",
vector_db=vector_db,
)
knowledge.add_contents(
[
{
"path": downloaded_cv_paths[0],
"metadata": {
"user_id": "jordan_mitchell",
"document_type": "cv",
"year": 2025,
},
},
{
"path": downloaded_cv_paths[1],
"metadata": {
"user_id": "taylor_brooks",
"document_type": "cv",
"year": 2025,
},
},
{
"path": downloaded_cv_paths[2],
"metadata": {
"user_id": "morgan_lee",
"document_type": "cv",
"year": 2025,
},
},
{
"path": downloaded_cv_paths[3],
"metadata": {
"user_id": "casey_jordan",
"document_type": "cv",
"year": 2025,
},
},
{
"path": downloaded_cv_paths[4],
"metadata": {
"user_id": "alex_rivera",
"document_type": "cv",
"year": 2025,
},
},
]
)
# Step 2: Query the knowledge base with different filter combinations
# ------------------------------------------------------------------------------
agent = Agent(
knowledge=knowledge,
search_knowledge=True,
)
agent.print_response(
"Tell me about Jordan Mitchell's experience and skills",
knowledge_filters={"user_id": "jordan_mitchell"},
markdown=True,
)
Usage
1
Install libraries
Copy
Ask AI
pip install -U agno sqlalchemy psycopg openai
2
Set environment variables
Copy
Ask AI
export OPENAI_API_KEY=xxx
3
Run PgVector
Copy
Ask AI
docker run -d \
-e POSTGRES_DB=ai \
-e POSTGRES_USER=ai \
-e POSTGRES_PASSWORD=ai \
-e PGDATA=/var/lib/postgresql/data/pgdata \
-v pgvolume:/var/lib/postgresql/data \
-p 5532:5432 \
--name pgvector \
agno/pgvector:16
4
Run the example
Copy
Ask AI
python cookbook/knowledge/filters/vector_dbs/filtering_pgvector.py