Code
Copy
Ask AI
from agno.agent import Agent
from agno.knowledge.knowledge import Knowledge
from agno.utils.media import (
SampleDataFileExtension,
download_knowledge_filters_sample_data,
)
from agno.vectordb.mongodb import MongoVectorDb
# Download all sample CVs and get their paths
downloaded_cv_paths = download_knowledge_filters_sample_data(
num_files=5, file_extension=SampleDataFileExtension.PDF
)
mdb_connection_string = "mongodb+srv://<username>:<password>@cluster0.mongodb.net/?retryWrites=true&w=majority"
# Step 1: Initialize knowledge base with documents and metadata
# ------------------------------------------------------------------------------
# When initializing the knowledge base, we can attach metadata that will be used for filtering
# This metadata can include user IDs, document types, dates, or any other attributes
knowledge = Knowledge(
name="MongoDB Knowledge Base",
description="A knowledge base for MongoDB",
vector_db=MongoVectorDb(
collection_name="filters",
db_url=mdb_connection_string,
search_index_name="filters",
),
)
# Load all documents into the vector database
knowledge.add_contents(
[
{
"path": downloaded_cv_paths[0],
"metadata": {
"user_id": "jordan_mitchell",
"document_type": "cv",
"year": 2025,
},
},
{
"path": downloaded_cv_paths[1],
"metadata": {
"user_id": "taylor_brooks",
"document_type": "cv",
"year": 2025,
},
},
{
"path": downloaded_cv_paths[2],
"metadata": {
"user_id": "morgan_lee",
"document_type": "cv",
"year": 2025,
},
},
{
"path": downloaded_cv_paths[3],
"metadata": {
"user_id": "casey_jordan",
"document_type": "cv",
"year": 2025,
},
},
{
"path": downloaded_cv_paths[4],
"metadata": {
"user_id": "alex_rivera",
"document_type": "cv",
"year": 2025,
},
},
]
)
# Step 2: Query the knowledge base with different filter combinations
# ------------------------------------------------------------------------------
agent = Agent(
knowledge=knowledge,
search_knowledge=True,
)
agent.print_response(
"Tell me about Jordan Mitchell's experience and skills",
knowledge_filters={"user_id": "jordan_mitchell"},
markdown=True,
)
Usage
1
Install libraries
Copy
Ask AI
pip install -U agno pymongo openai
2
Set environment variables
Copy
Ask AI
export OPENAI_API_KEY=xxx
3
Run MongoDB
Copy
Ask AI
docker run -d \
--name local-mongo \
-p 27017:27017 \
-e MONGO_INITDB_ROOT_USERNAME=mongoadmin \
-e MONGO_INITDB_ROOT_PASSWORD=secret \
mongo
4
Run the example
Copy
Ask AI
python cookbook/knowledge/filters/vector_dbs/filtering_mongo_db.py