You can use tool hooks to perform validation, logging, or any other logic before or after a tool is called.
A tool hook is a function that takes a function name, function call, and arguments. Inside the tool hook, you have to call the function call and return the result.
For example:
def logger_hook(
function_name: str, function_call: Callable, arguments: Dict[str, Any]
):
"""Log the duration of the function call"""
start_time = time.time()
# Call the function
result = function_call(**arguments)
end_time = time.time()
duration = end_time - start_time
logger.info(f"Function {function_name} took {duration:.2f} seconds to execute")
# Return the result
return result
or
def confirmation_hook(
function_name: str, function_call: Callable, arguments: Dict[str, Any]
):
"""Confirm the function call"""
if function_name != "get_top_hackernews_stories":
raise ValueError("This tool is not allowed to be called")
return function_call(**arguments)
You can assign tool hooks on agents and teams. The tool hooks will be applied to all tools in the agent or team.
For example:
agent = Agent(
model=OpenAIChat(id="gpt-4o-mini"),
tools=[DuckDuckGoTools()],
tool_hooks=[logger_hook],
)
You can also assign multiple tool hooks at once. They will be applied in the order they are assigned.
agent = Agent(
model=OpenAIChat(id="gpt-4o-mini"),
tools=[DuckDuckGoTools()],
tool_hooks=[logger_hook, confirmation_hook], # The logger_hook will run on the outer layer, and the confirmation_hook will run on the inner layer
)
You can also assign tool hooks to specific custom tools.
@tool(tool_hooks=[logger_hook, confirmation_hook])
def get_top_hackernews_stories(num_stories: int) -> Iterator[str]:
"""Fetch top stories from Hacker News.
Args:
num_stories (int): Number of stories to retrieve
"""
# Fetch top story IDs
response = httpx.get("https://hacker-news.firebaseio.com/v0/topstories.json")
story_ids = response.json()
# Yield story details
final_stories = []
for story_id in story_ids[:num_stories]:
story_response = httpx.get(
f"https://hacker-news.firebaseio.com/v0/item/{story_id}.json"
)
story = story_response.json()
if "text" in story:
story.pop("text", None)
final_stories.append(story)
return json.dumps(final_stories)
agent = Agent(
model=OpenAIChat(id="gpt-4o-mini"),
tools=[get_top_hackernews_stories],
)
Pre and Post Hooks
Pre and post hooks let’s you modify what happens before and after a tool is called. It is an alternative to tool hooks.
Set the pre_hook
in the @tool
decorator to run a function before the tool call.
Set the post_hook
in the @tool
decorator to run a function after the tool call.
Here’s a demo example of using a pre_hook
, post_hook
along with Agent Context.
import json
from typing import Iterator
import httpx
from agno.agent import Agent
from agno.tools import FunctionCall, tool
def pre_hook(fc: FunctionCall):
print(f"Pre-hook: {fc.function.name}")
print(f"Arguments: {fc.arguments}")
print(f"Result: {fc.result}")
def post_hook(fc: FunctionCall):
print(f"Post-hook: {fc.function.name}")
print(f"Arguments: {fc.arguments}")
print(f"Result: {fc.result}")
@tool(pre_hook=pre_hook, post_hook=post_hook)
def get_top_hackernews_stories(agent: Agent) -> Iterator[str]:
num_stories = agent.context.get("num_stories", 5) if agent.context else 5
# Fetch top story IDs
response = httpx.get("https://hacker-news.firebaseio.com/v0/topstories.json")
story_ids = response.json()
# Yield story details
for story_id in story_ids[:num_stories]:
story_response = httpx.get(
f"https://hacker-news.firebaseio.com/v0/item/{story_id}.json"
)
story = story_response.json()
if "text" in story:
story.pop("text", None)
yield json.dumps(story)
agent = Agent(
context={
"num_stories": 2,
},
tools=[get_top_hackernews_stories],
markdown=True,
show_tool_calls=True,
)
agent.print_response("What are the top hackernews stories?", stream=True)