Arize Phoenix is a powerful platform for monitoring and analyzing AI models. By integrating Agno with Arize Phoenix, you can leverage OpenInference to send traces and gain insights into your agent’s performance.
This example demonstrates how to instrument your Agno agent with OpenInference and send traces to Arize Phoenix.
Copy
Ask AI
import asyncioimport osfrom agno.agent import Agentfrom agno.models.openai import OpenAIChatfrom agno.tools.yfinance import YFinanceToolsfrom phoenix.otel import register# Set environment variables for Arize Phoenixos.environ["PHOENIX_CLIENT_HEADERS"] = f"api_key={os.getenv('ARIZE_PHOENIX_API_KEY')}"os.environ["PHOENIX_COLLECTOR_ENDPOINT"] = "https://app.phoenix.arize.com"# Configure the Phoenix tracertracer_provider = register( project_name="agno-stock-price-agent", # Default is 'default' auto_instrument=True, # Automatically use the installed OpenInference instrumentation)# Create and configure the agentagent = Agent( name="Stock Price Agent", model=OpenAIChat(id="gpt-4o-mini"), tools=[YFinanceTools()], instructions="You are a stock price agent. Answer questions in the style of a stock analyst.", debug_mode=True,)# Use the agentagent.print_response("What is the current price of Tesla?")
Now go to the phoenix cloud and view the traces created by your agent. You can visualize the execution flow, monitor performance, and debug issues directly from the Arize Phoenix dashboard.
For local development, you can run a local collector using
Copy
Ask AI
phoenix serve
Copy
Ask AI
import osfrom agno.agent import Agentfrom agno.models.openai import OpenAIChatfrom agno.tools.yfinance import YFinanceToolsfrom phoenix.otel import register# Set the local collector endpointos.environ["PHOENIX_COLLECTOR_ENDPOINT"] = "http://localhost:6006"# Configure the Phoenix tracertracer_provider = register( project_name="agno-stock-price-agent", # Default is 'default' auto_instrument=True, # Automatically use the installed OpenInference instrumentation)# Create and configure the agentagent = Agent( name="Stock Price Agent", model=OpenAIChat(id="gpt-4o-mini"), tools=[YFinanceTools()], instructions="You are a stock price agent. Answer questions in the style of a stock analyst.", debug_mode=True,)# Use the agentagent.print_response("What is the current price of Tesla?")
Environment Variables: Ensure your environment variables are correctly set for the API key and collector endpoint.
Local Development: Use phoenix serve to start a local collector for development purposes.
By following these steps, you can effectively integrate Agno with Arize Phoenix, enabling comprehensive observability and monitoring of your AI agents.