Skip to main content

Code

redis_db.py
from agno.agent import Agent
from agno.db.postgres import PostgresDb
from agno.knowledge.knowledge import Knowledge
from agno.vectordb.redis import RedisVectorDB

# Configure Redis connection
REDIS_URL = os.getenv("REDIS_URL", "redis://localhost:6379/0")
INDEX_NAME = os.getenv("REDIS_INDEX", "agno_cookbook_vectors")

# Initialize Redis Vector DB
vector_db = RedisVectorDb(
    index_name=INDEX_NAME,
    redis_url=REDIS_URL,
    search_type=SearchType.vector,  # try SearchType.hybrid for hybrid search
)

contents_db = PostgresDb(
    db_url="postgresql+psycopg://ai:ai@localhost:5532/ai",
    knowledge_table="knowledge_contents",
)

knowledge = Knowledge(
    name="My Qdrant Vector Knowledge Base",
    description="This is a knowledge base that uses a Qdrant Vector DB",
    vector_db=vector_db,
    contents_db=contents_db,
)

knowledge.add_content(
    name="Recipes",
    url="https://agno-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf",
    metadata={"doc_type": "recipe_book"},
)


agent = Agent(knowledge=knowledge)
agent.print_response("List down the ingredients to make Massaman Gai", markdown=True)


vector_db.delete_by_name("Recipes")

vector_db.delete_by_metadata({"doc_type": "recipe_book"})

Usage

1

Create a virtual environment

Open the Terminal and create a python virtual environment.
python3 -m venv .venv
source .venv/bin/activate
2

Install libraries

pip install -U redis redisvl pypdf openai agno
3

Run Redis

docker run -d --name my-redis -p 6379:6379 -p 8001:8001 redis/redis-stack:latest
4

Run Agent

python redis_db.py