Code
redis_db.py
Copy
Ask AI
from agno.agent import Agent
from agno.db.postgres import PostgresDb
from agno.knowledge.knowledge import Knowledge
from agno.vectordb.redis import RedisVectorDB
# Configure Redis connection
REDIS_URL = os.getenv("REDIS_URL", "redis://localhost:6379/0")
INDEX_NAME = os.getenv("REDIS_INDEX", "agno_cookbook_vectors")
# Initialize Redis Vector DB
vector_db = RedisVectorDb(
index_name=INDEX_NAME,
redis_url=REDIS_URL,
search_type=SearchType.vector, # try SearchType.hybrid for hybrid search
)
contents_db = PostgresDb(
db_url="postgresql+psycopg://ai:ai@localhost:5532/ai",
knowledge_table="knowledge_contents",
)
knowledge = Knowledge(
name="My Qdrant Vector Knowledge Base",
description="This is a knowledge base that uses a Qdrant Vector DB",
vector_db=vector_db,
contents_db=contents_db,
)
knowledge.add_content(
name="Recipes",
url="https://agno-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf",
metadata={"doc_type": "recipe_book"},
)
agent = Agent(knowledge=knowledge)
agent.print_response("List down the ingredients to make Massaman Gai", markdown=True)
vector_db.delete_by_name("Recipes")
vector_db.delete_by_metadata({"doc_type": "recipe_book"})
Usage
1
Create a virtual environment
Open the
Terminal and create a python virtual environment.Copy
Ask AI
python3 -m venv .venv
source .venv/bin/activate
2
Install libraries
Copy
Ask AI
pip install -U redis redisvl pypdf openai agno
3
Run Redis
Copy
Ask AI
docker run -d --name my-redis -p 6379:6379 -p 8001:8001 redis/redis-stack:latest
4
Run Agent
Copy
Ask AI
python redis_db.py