Code
cookbook/knowledge/vector_db/mongo_db/mongo_db_hybrid_search.py
Copy
Ask AI
import typer
from agno.agent import Agent
from agno.knowledge.knowledge import Knowledge
from agno.vectordb.mongodb import MongoVectorDb
from agno.vectordb.search import SearchType
from rich.prompt import Prompt
mdb_connection_string = "mongodb://localhost:27017"
vector_db = MongoVectorDb(
collection_name="recipes",
db_url=mdb_connection_string,
search_index_name="recipes",
search_type=SearchType.hybrid,
)
knowledge_base = Knowledge(
vector_db=vector_db,
)
knowledge_base.add_content(
name="Recipes",
url="https://agno-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf",
metadata={"doc_type": "recipe_book"},
)
def mongodb_agent(user: str = "user"):
agent = Agent(
user_id=user,
knowledge=knowledge_base,
search_knowledge=True,
)
while True:
message = Prompt.ask(f"[bold] :sunglasses: {user} [/bold]")
if message in ("exit", "bye"):
break
agent.print_response(message)
if __name__ == "__main__":
typer.run(mongodb_agent)
Usage
1
Create a virtual environment
Open the
Terminal and create a python virtual environment.Copy
Ask AI
python3 -m venv .venv
source .venv/bin/activate
2
Install libraries
Copy
Ask AI
pip install -U pymongo typer rich pypdf openai agno
3
Run MongoDB
Copy
Ask AI
docker run -d \
--name local-mongo \
-p 27017:27017 \
-e MONGO_INITDB_ROOT_USERNAME=mongoadmin \
-e MONGO_INITDB_ROOT_PASSWORD=secret \
mongo
4
Run Agent
Copy
Ask AI
python cookbook/knowledge/vector_db/mongo_db/mongo_db_hybrid_search.py