1
Add the following code to your Python file
agent_as_judge_with_guidelines.py
Copy
Ask AI
from typing import Optional
from agno.agent import Agent
from agno.db.sqlite import SqliteDb
from agno.eval.agent_as_judge import AgentAsJudgeEval, AgentAsJudgeResult
from agno.models.openai import OpenAIResponses
# Setup database to persist eval results
db = SqliteDb(db_file="tmp/agent_as_judge_guidelines.db")
agent = Agent(
model=OpenAIResponses(id="gpt-5.2"),
instructions="You are a Tesla Model 3 product specialist. Provide detailed and helpful specifications.",
db=db,
)
response = agent.run("What is the maximum speed of the Tesla Model 3?")
evaluation = AgentAsJudgeEval(
name="Product Info Quality",
model=OpenAIResponses(id="gpt-5.2"),
criteria="Response should be informative, well-formatted, and accurate for product specifications",
scoring_strategy="numeric",
threshold=8,
additional_guidelines=[
"Must include specific numbers with proper units (mph, km/h, etc.)",
"Should provide context for different model variants if applicable",
"Information should be technically accurate and complete",
],
db=db,
)
result: Optional[AgentAsJudgeResult] = evaluation.run(
input="What is the maximum speed?",
output=str(response.content),
print_results=True,
)
# Query database for stored results
print("Database Results:")
eval_runs = db.get_eval_runs()
print(f"Total evaluations stored: {len(eval_runs)}")
if eval_runs:
latest = eval_runs[-1]
print(f"Eval ID: {latest.run_id}")
print(f"Additional guidelines used: {len(evaluation.additional_guidelines)}")
2
Set up your virtual environment
Copy
Ask AI
uv venv --python 3.12
source .venv/bin/activate
3
Install dependencies
Copy
Ask AI
uv pip install -U agno openai
4
Export your OpenAI API key
Copy
Ask AI
export OPENAI_API_KEY="your_openai_api_key_here"
5
Run the example
Copy
Ask AI
python agent_as_judge_with_guidelines.py