from agno.agent import Agent
from agno.knowledge.knowledge import Knowledge
from agno.models.meta import Llama
from agno.vectordb.pgvector import PgVector
db_url = "postgresql+psycopg://ai:ai@localhost:5532/ai"
knowledge = Knowledge(
vector_db=PgVector(table_name="recipes", db_url=db_url),
)
# Add content to the knowledge
knowledge.add_content(
url="https://agno-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf"
)
agent = Agent(
model=Llama(id="Llama-4-Maverick-17B-128E-Instruct-FP8"), knowledge=knowledge
)
agent.print_response("How to make Thai curry?", markdown=True)
Create a virtual environment
Terminal
and create a python virtual environment.python3 -m venv .venv
source .venv/bin/activate
Set your LLAMA API key
export LLAMA_API_KEY=YOUR_API_KEY
Install libraries
pip install ddgs sqlalchemy pgvector pypdf llama-api-client
Run Agent
python python cookbook/models/meta/llama/knowledge.py