Code
cookbook/models/ibm/watsonx/knowledge.py
from agno.agent import Agent
from agno.knowledge.pdf_url import PDFUrlKnowledgeBase
from agno.models.ibm import WatsonX
from agno.vectordb.pgvector import PgVector
db_url = "postgresql+psycopg://ai:ai@localhost:5532/ai"
knowledge_base = PDFUrlKnowledgeBase(
urls=["https://agno-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf"],
vector_db=PgVector(table_name="recipes", db_url=db_url),
)
knowledge_base.load(recreate=True) # Comment out after first run
agent = Agent(
model=WatsonX(id="ibm/granite-20b-code-instruct"),
knowledge=knowledge_base,
show_tool_calls=True,
)
agent.print_response("How to make Thai curry?", markdown=True)
Usage
Create a virtual environment
Open the Terminal
and create a python virtual environment.
python3 -m venv .venv
source .venv/bin/activate
Set your API key
export IBM_WATSONX_API_KEY=xxx
export IBM_WATSONX_PROJECT_ID=xxx
Install libraries
pip install -U ibm-watsonx-ai sqlalchemy pgvector psycopg pypdf openai agno
Set up PostgreSQL with pgvector
You need a PostgreSQL database with the pgvector extension installed. Adjust the db_url
in the code to match your database configuration.
Run Agent
python cookbook/models/ibm/watsonx/knowledge.py
For subsequent runs
After the first run, comment out the knowledge_base.load(recreate=True)
line to avoid reloading the PDF.
This example shows how to integrate a knowledge base with IBM WatsonX. It loads a PDF from a URL, processes it into a vector database (PostgreSQL with pgvector in this case), and then creates an agent that can query this knowledge base.
Note: You need to install several packages (pgvector
, pypdf
, etc.) and have a PostgreSQL database with the pgvector extension available.