Code
cookbook/models/ibm/watsonx/image_agent_bytes.py
from pathlib import Path
from agno.agent import Agent
from agno.media import Image
from agno.models.ibm import WatsonX
from agno.tools.duckduckgo import DuckDuckGoTools
agent = Agent(
model=WatsonX(id="meta-llama/llama-3-2-11b-vision-instruct"),
tools=[DuckDuckGoTools()],
markdown=True,
)
image_path = Path(__file__).parent.joinpath("sample.jpg")
# Read the image file content as bytes
with open(image_path, "rb") as img_file:
image_bytes = img_file.read()
agent.print_response(
"Tell me about this image and give me the latest news about it.",
images=[
Image(content=image_bytes),
],
stream=True,
)
Usage
Create a virtual environment
Open the Terminal
and create a python virtual environment.
python3 -m venv .venv
source .venv/bin/activate
Set your API key
export IBM_WATSONX_API_KEY=xxx
export IBM_WATSONX_PROJECT_ID=xxx
Install libraries
pip install -U ibm-watsonx-ai duckduckgo-search agno
Add sample image
Place a sample image named “sample.jpg” in the same directory as the script.
Run Agent
python cookbook/models/ibm/watsonx/image_agent_bytes.py
This example shows how to use IBM WatsonX with vision capabilities. It loads an image from a file and passes it to the model along with a prompt. The model can then analyze the image and provide relevant information.
Note: This example uses a vision-capable model (meta-llama/llama-3-2-11b-vision-instruct
) and requires a sample image file.