Skip to main content
"""
User Profile: Custom Schema
===========================
Define your own profile structure with a dataclass.

Use custom schemas when you want specific fields (e.g., role, department)
instead of the default free-form profile.

Compare with: 01_always_extraction.py for default schema.
See also: 01_basics/1a_user_profile_always.py for the basics.
"""

from dataclasses import dataclass, field
from typing import Optional

from agno.agent import Agent
from agno.db.postgres import PostgresDb
from agno.learn import LearningMachine, LearningMode, UserProfileConfig
from agno.learn.schemas import UserProfile
from agno.models.openai import OpenAIResponses

# ---------------------------------------------------------------------------
# Custom Profile Schema
# ---------------------------------------------------------------------------


@dataclass
class DeveloperProfile(UserProfile):
    """Profile schema for developers. Each field has a description the LLM uses."""

    company: Optional[str] = field(
        default=None, metadata={"description": "Company or organization"}
    )
    role: Optional[str] = field(
        default=None, metadata={"description": "Job title (e.g., Senior Engineer)"}
    )
    primary_language: Optional[str] = field(
        default=None, metadata={"description": "Main programming language"}
    )
    languages: Optional[list[str]] = field(
        default=None, metadata={"description": "All programming languages they know"}
    )
    frameworks: Optional[list[str]] = field(
        default=None, metadata={"description": "Frameworks and libraries they use"}
    )
    experience_years: Optional[int] = field(
        default=None, metadata={"description": "Years of programming experience"}
    )


# ---------------------------------------------------------------------------
# Create Agent
# ---------------------------------------------------------------------------

db = PostgresDb(db_url="postgresql+psycopg://ai:ai@localhost:5532/ai")

agent = Agent(
    model=OpenAIResponses(id="gpt-5.2"),
    db=db,
    learning=LearningMachine(
        user_profile=UserProfileConfig(
            mode=LearningMode.ALWAYS,
            schema=DeveloperProfile,
        ),
    ),
    markdown=True,
)

# ---------------------------------------------------------------------------
# Run Demo
# ---------------------------------------------------------------------------

if __name__ == "__main__":
    user_id = "[email protected]"

    # Share info that maps to schema fields
    print("\n" + "=" * 60)
    print("CONVERSATION 1: Introduction")
    print("=" * 60 + "\n")

    agent.print_response(
        "Hi! I'm Alex Chen, a senior backend engineer at Stripe. "
        "I've been coding for about 12 years now.",
        user_id=user_id,
        session_id="conv_1",
        stream=True,
    )
    agent.learning_machine.user_profile_store.print(user_id=user_id)

    # Add tech stack details
    print("\n" + "=" * 60)
    print("CONVERSATION 2: Tech stack")
    print("=" * 60 + "\n")

    agent.print_response(
        "I mainly work with Go and Python. For Python, I use FastAPI "
        "and SQLAlchemy a lot. I'm also familiar with Rust.",
        user_id=user_id,
        session_id="conv_2",
        stream=True,
    )
    agent.learning_machine.user_profile_store.print(user_id=user_id)

    # Test personalization
    print("\n" + "=" * 60)
    print("CONVERSATION 3: Personalized response")
    print("=" * 60 + "\n")

    agent.print_response(
        "How should I structure a new microservice?",
        user_id=user_id,
        session_id="conv_3",
        stream=True,
    )

Run the Example

# Clone and setup repo
git clone https://github.com/agno-agi/agno.git
cd agno/cookbook/08_learning/02_user_profile

# Create and activate virtual environment
./scripts/demo_setup.sh
source .venvs/demo/bin/activate

python 03_custom_schema.py