Copy
Ask AI
"""
User Profile: Agentic Mode (Deep Dive)
======================================
Agent-controlled profile updates via explicit tools.
AGENTIC mode gives the agent a tool to update profile fields.
You'll see tool calls in the response - more transparent than ALWAYS mode.
Compare with: 01_always_extraction.py for automatic extraction.
See also: 01_basics/1b_user_profile_agentic.py for the basics.
"""
from agno.agent import Agent
from agno.db.postgres import PostgresDb
from agno.learn import LearningMachine, LearningMode, UserProfileConfig
from agno.models.openai import OpenAIResponses
# ---------------------------------------------------------------------------
# Create Agent
# ---------------------------------------------------------------------------
db = PostgresDb(db_url="postgresql+psycopg://ai:ai@localhost:5532/ai")
agent = Agent(
model=OpenAIResponses(id="gpt-5.2"),
db=db,
instructions=(
"You are a helpful assistant. "
"When users share their name or preferences, use update_user_profile to save it."
),
learning=LearningMachine(
user_profile=UserProfileConfig(
mode=LearningMode.AGENTIC,
),
),
markdown=True,
)
# ---------------------------------------------------------------------------
# Run Demo
# ---------------------------------------------------------------------------
if __name__ == "__main__":
user_id = "[email protected]"
# Session 1: Share name - watch for tool calls
print("\n" + "=" * 60)
print("SESSION 1: Share name (watch for tool calls)")
print("=" * 60 + "\n")
agent.print_response(
"Hi! I'm Jordan Chen, but everyone calls me JC.",
user_id=user_id,
session_id="session_1",
stream=True,
)
agent.learning_machine.user_profile_store.print(user_id=user_id)
# Session 2: Recall in new session
print("\n" + "=" * 60)
print("SESSION 2: Profile recalled in new session")
print("=" * 60 + "\n")
agent.print_response(
"What's my name and what should you call me?",
user_id=user_id,
session_id="session_2",
stream=True,
)
agent.learning_machine.user_profile_store.print(user_id=user_id)
# Session 3: Update preferred name
print("\n" + "=" * 60)
print("SESSION 3: Update preferred name")
print("=" * 60 + "\n")
agent.print_response(
"Actually, I'd prefer you call me Jordan from now on.",
user_id=user_id,
session_id="session_3",
stream=True,
)
agent.learning_machine.user_profile_store.print(user_id=user_id)
Run the Example
Copy
Ask AI
# Clone and setup repo
git clone https://github.com/agno-agi/agno.git
cd agno/cookbook/08_learning/02_user_profile
# Create and activate virtual environment
./scripts/demo_setup.sh
source .venvs/demo/bin/activate
python 02_agentic_mode.py