Copy
Ask AI
"""
Session Context: Summary Mode (Deep Dive)
=========================================
Running summary of conversation state.
Summary mode maintains a running summary of the conversation that
persists across reconnections. Each turn, the summary is updated
to include the new information.
Compare with: 02_planning_mode.py for goal/plan tracking.
See also: 01_basics/3a_session_context_summary.py for the basics.
"""
from agno.agent import Agent
from agno.db.postgres import PostgresDb
from agno.learn import LearningMachine, SessionContextConfig
from agno.models.openai import OpenAIResponses
# ---------------------------------------------------------------------------
# Create Agent
# ---------------------------------------------------------------------------
db = PostgresDb(db_url="postgresql+psycopg://ai:ai@localhost:5532/ai")
agent = Agent(
model=OpenAIResponses(id="gpt-5.2"),
db=db,
learning=LearningMachine(
session_context=SessionContextConfig(
enable_planning=False, # Summary only
),
),
markdown=True,
)
# ---------------------------------------------------------------------------
# Run: Multi-Turn Summary
# ---------------------------------------------------------------------------
if __name__ == "__main__":
user_id = "[email protected]"
session_id = "debug_session"
# Turn 1: Initial question
print("\n" + "=" * 60)
print("TURN 1: Initial question")
print("=" * 60 + "\n")
agent.print_response(
"I'm debugging a memory leak in my Python FastAPI server. "
"It processes large JSON payloads.",
user_id=user_id,
session_id=session_id,
stream=True,
)
agent.learning_machine.session_context_store.print(session_id=session_id)
# Turn 2: More context
print("\n" + "=" * 60)
print("TURN 2: More context")
print("=" * 60 + "\n")
agent.print_response(
"The memory grows even when there's no traffic. "
"I've checked for unclosed file handles already.",
user_id=user_id,
session_id=session_id,
stream=True,
)
agent.learning_machine.session_context_store.print(session_id=session_id)
# Turn 3: Follow-up
print("\n" + "=" * 60)
print("TURN 3: Follow-up")
print("=" * 60 + "\n")
agent.print_response(
"Could it be related to Pydantic model caching?",
user_id=user_id,
session_id=session_id,
stream=True,
)
agent.learning_machine.session_context_store.print(session_id=session_id)
# Simulate reconnection
print("\n" + "=" * 60)
print("TURN 4: Recall after 'reconnection'")
print("=" * 60 + "\n")
agent.print_response(
"What were we debugging?",
user_id=user_id,
session_id=session_id,
stream=True,
)
Run the Example
Copy
Ask AI
# Clone and setup repo
git clone https://github.com/agno-agi/agno.git
cd agno/cookbook/08_learning/03_session_context
# Create and activate virtual environment
./scripts/demo_setup.sh
source .venvs/demo/bin/activate
python 01_summary_mode.py