Skip to main content
"""
Learning Machines
=================
Set learning=True to turn an agent into a learning machine.

The agent automatically captures:
- User profile: name, role, preferences
- User memory: observations, context, patterns

No explicit tool calls needed. Extraction runs in parallel.
"""

from agno.agent import Agent
from agno.db.sqlite import SqliteDb
from agno.models.openai import OpenAIResponses

# ---------------------------------------------------------------------------
# Create Agent
# ---------------------------------------------------------------------------
db = SqliteDb(db_file="tmp/agents.db")

agent = Agent(
    model=OpenAIResponses(id="gpt-5.2"),
    db=db,
    learning=True,
    markdown=True,
)

# ---------------------------------------------------------------------------
# Run Demo
# ---------------------------------------------------------------------------
if __name__ == "__main__":
    user_id = "[email protected]"

    # Session 1: Share information naturally
    print("\n--- Session 1: Extraction happens automatically ---\n")
    agent.print_response(
        "Hi! I'm Alice. I work at Anthropic as a research scientist. "
        "I prefer concise responses without too much explanation.",
        user_id=user_id,
        session_id="session_1",
        stream=True,
    )
    lm = agent.learning_machine
    lm.user_profile_store.print(user_id=user_id)
    lm.user_memory_store.print(user_id=user_id)

    # Session 2: New session - agent remembers
    print("\n--- Session 2: Agent remembers across sessions ---\n")
    agent.print_response(
        "What do you know about me?",
        user_id=user_id,
        session_id="session_2",
        stream=True,
    )

Run the Example

# Clone and setup repo
git clone https://github.com/agno-agi/agno.git
cd agno/cookbook/08_learning/00_quickstart

# Create and activate virtual environment
./scripts/demo_setup.sh
source .venvs/demo/bin/activate

python 01_always_learn.py