Copy
Ask AI
import asyncio
from agno.agent import Agent
from agno.db.postgres.postgres import PostgresDb
from agno.knowledge.knowledge import Knowledge
from agno.knowledge.reader.tavily_reader import TavilyReader
from agno.models.openai import OpenAIChat
from agno.vectordb.pgvector import PgVector
db_url = "postgresql+psycopg://ai:ai@localhost:5532/ai"
# Initialize database and vector store
db = PostgresDb(id="tavily-reader-db", db_url=db_url)
vector_db = PgVector(
db_url=db_url,
table_name="tavily_documents",
)
knowledge = Knowledge(
name="Tavily Extracted Documents",
contents_db=db,
vector_db=vector_db,
)
async def main():
"""
Example demonstrating async TavilyReader usage with Knowledge base integration.
This example shows:
1. Adding content from URLs using TavilyReader asynchronously
2. Integrating with Knowledge base for RAG
3. Querying the agent with search_knowledge enabled
"""
# URLs to extract content from
urls_to_extract = [
"https://github.com/agno-agi/agno",
"https://docs.tavily.com/documentation/api-reference/endpoint/extract",
]
print("=" * 80)
print("Adding content to Knowledge base using TavilyReader (async)")
print("=" * 80)
# Add content from URLs using TavilyReader
# Note: Comment out after first run to avoid re-adding the same content
for url in urls_to_extract:
print(f"\nExtracting content from: {url}")
await knowledge.ainsert(
url,
reader=TavilyReader(
extract_format="markdown",
extract_depth="basic",
chunk=True,
chunk_size=3000,
),
)
print("\n" + "=" * 80)
print("Creating Agent with Knowledge base")
print("=" * 80)
# Create an agent with the knowledge
agent = Agent(
model=OpenAIChat(id="gpt-5.2"),
knowledge=knowledge,
search_knowledge=True, # Enable knowledge search
debug_mode=True,
)
print("\n" + "=" * 80)
print("Querying Agent")
print("=" * 80)
# Ask questions about the extracted content
await agent.aprint_response(
"What is Agno and what are its main features based on the documentation?",
markdown=True,
)
print("\n" + "=" * 80)
print("Second Query")
print("=" * 80)
await agent.aprint_response(
"What is the Tavily Extract API and how does it work?",
markdown=True,
)
if __name__ == "__main__":
# Run the async main function
asyncio.run(main())
Run the Example
Copy
Ask AI
# Clone and setup repo
git clone https://github.com/agno-agi/agno.git
cd agno/cookbook/07_knowledge/readers
# Create and activate virtual environment
./scripts/demo_setup.sh
source .venvs/demo/bin/activate
# Optiona: Run PgVector (needs docker)
./cookbook/scripts/run_pgvector.sh
python tavily_reader_async.py