Copy
Ask AI
import os
from agno.knowledge.reader.tavily_reader import TavilyReader
api_key = os.getenv("TAVILY_API_KEY")
# Example 1: Basic extraction with markdown format
print("=" * 80)
print("Example 1: Basic extraction (markdown, basic depth)")
print("=" * 80)
reader_basic = TavilyReader(
api_key=api_key,
extract_format="markdown",
extract_depth="basic", # 1 credit per 5 URLs
chunk=True,
)
try:
documents = reader_basic.read("https://github.com/agno-agi/agno")
if documents:
print(f"Extracted {len(documents)} document(s)")
for doc in documents:
print(f"\nDocument: {doc.name}")
print(f"Content length: {len(doc.content)} characters")
print(f"Content preview: {doc.content[:200]}...")
print("-" * 80)
else:
print("No documents were returned")
except Exception as e:
print(f"Error occurred: {str(e)}")
# Example 2: Advanced extraction with text format
print("\n" + "=" * 80)
print("Example 2: Advanced extraction (text, advanced depth)")
print("=" * 80)
reader_advanced = TavilyReader(
api_key=api_key,
extract_format="text",
extract_depth="advanced", # 2 credits per 5 URLs, more comprehensive
chunk=False, # Get full content without chunking
)
try:
documents = reader_advanced.read(
"https://docs.tavily.com/documentation/api-reference/endpoint/extract"
)
if documents:
print(f"Extracted {len(documents)} document(s)")
for doc in documents:
print(f"\nDocument: {doc.name}")
print(f"Content length: {len(doc.content)} characters")
print(f"Content preview: {doc.content[:200]}...")
print("-" * 80)
else:
print("No documents were returned")
except Exception as e:
print(f"Error occurred: {str(e)}")
# Example 3: With custom parameters
print("\n" + "=" * 80)
print("Example 3: Custom parameters")
print("=" * 80)
reader_custom = TavilyReader(
api_key=api_key,
extract_format="markdown",
extract_depth="basic",
chunk=True,
chunk_size=3000, # Custom chunk size
params={
# Additional Tavily API parameters can be passed here
},
)
try:
documents = reader_custom.read("https://www.anthropic.com")
if documents:
print(f"Extracted {len(documents)} document(s) with custom chunk size")
for doc in documents:
print(f"\nDocument: {doc.name}")
print(f"Content length: {len(doc.content)} characters")
print("-" * 80)
else:
print("No documents were returned")
except Exception as e:
print(f"Error occurred: {str(e)}")
Run the Example
Copy
Ask AI
# Clone and setup repo
git clone https://github.com/agno-agi/agno.git
cd agno/cookbook/07_knowledge/readers
# Create and activate virtual environment
./scripts/demo_setup.sh
source .venvs/demo/bin/activate
# Export relevant API keys
export TAVILY_API_KEY="***"
python tavily_reader.py