Copy
Ask AI
from agno.agent import Agent
from agno.knowledge.chunking.semantic import SemanticChunking
from agno.knowledge.embedder.google import GeminiEmbedder
from agno.knowledge.knowledge import Knowledge
from agno.knowledge.reader.pdf_reader import PDFReader
from agno.vectordb.pgvector import PgVector
from chonkie.embeddings import GeminiEmbeddings
db_url = "postgresql+psycopg://ai:ai@localhost:5532/ai"
agno_embedder = (
GeminiEmbedder()
) # Agno embedder is used to get the embedding for the vector database
chonkie_embedder = GeminiEmbeddings(
model="gemini-embedding-exp-03-07"
) # Chonkie embedder is used to get the embedding for the semantic chunking
knowledge = Knowledge(
vector_db=PgVector(
table_name="recipes_semantic_chunking", db_url=db_url, embedder=agno_embedder
),
)
knowledge.insert(
url="https://agno-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf",
reader=PDFReader(
name="Semantic Chunking Reader",
chunking_strategy=SemanticChunking(
embedder=chonkie_embedder,
chunk_size=500,
similarity_threshold=0.5,
similarity_window=3,
min_sentences_per_chunk=1,
min_characters_per_sentence=24,
delimiters=[". ", "! ", "? ", "\n"],
include_delimiters="prev",
skip_window=0,
filter_window=5,
filter_polyorder=3,
filter_tolerance=0.2,
),
),
)
agent = Agent(
knowledge=knowledge,
search_knowledge=True,
)
agent.print_response("How to make Thai curry?", markdown=True)
Run the Example
Copy
Ask AI
# Clone and setup repo
git clone https://github.com/agno-agi/agno.git
cd agno/cookbook/07_knowledge/chunking
# Create and activate virtual environment
./scripts/demo_setup.sh
source .venvs/demo/bin/activate
# Optiona: Run PgVector (needs docker)
./cookbook/scripts/run_pgvector.sh
python semantic_chunking_chonkie_embedder.py