Copy
Ask AI
from agno.agent import Agent
from agno.knowledge.chunking.code import CodeChunking
from agno.knowledge.knowledge import Knowledge
from agno.knowledge.reader.text_reader import TextReader
from agno.vectordb.pgvector import PgVector
db_url = "postgresql+psycopg://ai:ai@localhost:5532/ai"
knowledge = Knowledge(
vector_db=PgVector(table_name="python_code_chunking", db_url=db_url),
)
# Add code with CodeChunking
knowledge.insert(
url="https://raw.githubusercontent.com/agno-agi/agno/main/libs/agno/agno/session/workflow.py",
reader=TextReader(
chunking_strategy=CodeChunking(
tokenizer="gpt2", chunk_size=500, language="python", include_nodes=False
),
),
)
# Query with agent
agent = Agent(knowledge=knowledge, search_knowledge=True)
agent.print_response("How does the Workflow class work?", markdown=True)
Run the Example
Copy
Ask AI
# Clone and setup repo
git clone https://github.com/agno-agi/agno.git
cd agno/cookbook/07_knowledge/chunking
# Create and activate virtual environment
./scripts/demo_setup.sh
source .venvs/demo/bin/activate
# Optiona: Run PgVector (needs docker)
./cookbook/scripts/run_pgvector.sh
python code_chunking.py