import typer
from agno.agent import Agent
from agno.knowledge.knowledge import Knowledge
from agno.vectordb.qdrant import Qdrant
from agno.vectordb.search import SearchType
from rich.prompt import Prompt
COLLECTION_NAME = "thai-recipes"
vector_db = Qdrant(
collection=COLLECTION_NAME,
url="http://localhost:6333",
search_type=SearchType.hybrid,
)
knowledge = Knowledge(
name="My Qdrant Vector Knowledge Base",
vector_db=vector_db,
)
knowledge.add_content(
name="Recipes",
url="https://agno-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf",
metadata={"doc_type": "recipe_book"},
)
def qdrantdb_agent(user: str = "user"):
agent = Agent(
user_id=user,
knowledge=knowledge,
search_knowledge=True,
)
while True:
message = Prompt.ask(f"[bold] :sunglasses: {user} [/bold]")
if message in ("exit", "bye"):
break
agent.print_response(message)
if __name__ == "__main__":
typer.run(qdrantdb_agent)
Create a virtual environment
Terminal
and create a python virtual environment.python3 -m venv .venv
source .venv/bin/activate
Install libraries
pip install -U qdrant-client typer rich pypdf openai agno
Run Qdrant
docker run -d --name qdrant -p 6333:6333 qdrant/qdrant:latest
Run Agent
python cookbook/knowledge/vector_db/qdrant_db/qdrant_db_hybrid_search.py