Vector Databases
Pinecone Integration
Examples
- Introduction
- Getting Started
- Agents
- Teams
- Workflows
- Applications
Agent Concepts
- Multimodal
- RAG
- Knowledge
- Memory
- Async
- Hybrid Search
- Storage
- Tools
- Vector Databases
- Embedders
Models
- Anthropic
- AWS Bedrock
- AWS Bedrock Claude
- Azure AI Foundry
- Azure OpenAI
- Cohere
- DeepInfra
- DeepSeek
- Fireworks
- Gemini
- Groq
- Hugging Face
- Mistral
- NVIDIA
- Ollama
- OpenAI
- Perplexity
- Together
- xAI
- IBM
- LM Studio
- LiteLLM
- LiteLLM OpenAI
Vector Databases
Pinecone Integration
Code
cookbook/agent_concepts/vector_dbs/pinecone_db.py
from os import getenv
from agno.agent import Agent
from agno.knowledge.pdf_url import PDFUrlKnowledgeBase
from agno.vectordb.pineconedb import PineconeDb
api_key = getenv("PINECONE_API_KEY")
index_name = "thai-recipe-index"
vector_db = PineconeDb(
name=index_name,
dimension=1536,
metric="cosine",
spec={"serverless": {"cloud": "aws", "region": "us-east-1"}},
api_key=api_key,
)
knowledge_base = PDFUrlKnowledgeBase(
urls=["https://agno-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf"],
vector_db=vector_db,
)
knowledge_base.load(recreate=False, upsert=True)
agent = Agent(
knowledge=knowledge_base,
show_tool_calls=True,
search_knowledge=True,
read_chat_history=True,
)
agent.print_response("How do I make pad thai?", markdown=True)
Usage
1
Create a virtual environment
Open the Terminal
and create a python virtual environment.
python3 -m venv .venv
source .venv/bin/activate
2
Set your API key
export PINECONE_API_KEY=xxx
3
Install libraries
pip install -U pinecone-client pypdf openai agno
4
Run Agent
python cookbook/agent_concepts/vector_dbs/pinecone_db.py