Vector Databases
Clickhouse Integration
Examples
- Introduction
- Getting Started
- Agents
- Workflows
- Applications
Agent Concepts
- Multimodal
- RAG
- Knowledge
- Memory
- Teams
- Async
- Hybrid Search
- Storage
- Tools
- Vector Databases
- Embedders
Models
- Anthropic
- AWS Bedrock Claude
- Azure OpenAI
- Cohere
- DeepSeek
- Fireworks
- Gemini
- Groq
- Hugging Face
- Mistral
- NVIDIA
- Ollama
- OpenAI
- Together
- Vertex AI
- xAI
Vector Databases
Clickhouse Integration
Code
cookbook/agent_concepts/vector_dbs/clickhouse.py
from agno.agent import Agent
from agno.knowledge.pdf_url import PDFUrlKnowledgeBase
from agno.storage.agent.sqlite import SqliteAgentStorage
from agno.vectordb.clickhouse import Clickhouse
agent = Agent(
storage=SqliteAgentStorage(table_name="recipe_agent"),
knowledge=PDFUrlKnowledgeBase(
urls=["https://agno-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf"],
vector_db=Clickhouse(
table_name="recipe_documents",
host="localhost",
port=8123,
username="ai",
password="ai",
),
),
show_tool_calls=True,
search_knowledge=True,
read_chat_history=True,
)
agent.knowledge.load(recreate=False) # type: ignore
agent.print_response("How do I make pad thai?", markdown=True)
Usage
1
Create a virtual environment
Open the Terminal
and create a python virtual environment.
2
Start Clickhouse
docker run -d \
-e CLICKHOUSE_DB=ai \
-e CLICKHOUSE_USER=ai \
-e CLICKHOUSE_PASSWORD=ai \
-e CLICKHOUSE_DEFAULT_ACCESS_MANAGEMENT=1 \
-v clickhouse_data:/var/lib/clickhouse/ \
-v clickhouse_log:/var/log/clickhouse-server/ \
-p 8123:8123 \
-p 9000:9000 \
--ulimit nofile=262144:262144 \
--name clickhouse-server \
clickhouse/clickhouse-server
3
Install libraries
pip install -U clickhouse-connect pypdf openai agno
4
Run Agent