from agno.agent import Agent
from agno.knowledge.knowledge import Knowledge
from agno.vectordb.pgvector import PgVector
db_url = "postgresql+psycopg://ai:ai@localhost:5532/ai"
vector_db = PgVector(table_name="vectors", db_url=db_url)
knowledge = Knowledge(
name="My PG Vector Knowledge Base",
description="This is a knowledge base that uses a PG Vector DB",
vector_db=vector_db,
)
knowledge.add_content(
name="Recipes",
url="https://agno-public.s3.amazonaws.com/recipes/ThaiRecipes.pdf",
metadata={"doc_type": "recipe_book"},
)
agent = Agent(
knowledge=knowledge,
search_knowledge=True,
read_chat_history=True,
)
agent.print_response("How do I make pad thai?", markdown=True)
vector_db.delete_by_name("Recipes")
vector_db.delete_by_metadata({"doc_type": "recipe_book"})
Create a virtual environment
Terminal
and create a python virtual environment.python3 -m venv .venv
source .venv/bin/activate
Install libraries
pip install -U psycopg2-binary pgvector pypdf openai agno
Set environment variables
export OPENAI_API_KEY=xxx
Run Agent
python cookbook/knowledge/vector_db/pgvector/pgvector_db.py