Code

cookbook/knowledge/vector_db/lightrag/lightrag.py

from os import getenv

from agno.agent import Agent
from agno.knowledge.knowledge import Knowledge
from agno.knowledge.reader.wikipedia_reader import WikipediaReader
from agno.vectordb.lightrag import LightRag

vector_db = LightRag(
    api_key=getenv("LIGHTRAG_API_KEY"),
)

knowledge = Knowledge(
    name="My Pinecone Knowledge Base",
    description="This is a knowledge base that uses a Pinecone Vector DB",
    vector_db=vector_db,
)



knowledge.add_content(
    name="Recipes",
    path="cookbook/knowledge/testing_resources/cv_1.pdf",
    metadata={"doc_type": "recipe_book"},
)


knowledge.add_content(
    name="Recipes",
    topics=["Manchester United"],
    reader=WikipediaReader(),
)


knowledge.add_content(
    name="Recipes",
    url="https://en.wikipedia.org/wiki/Manchester_United_F.C.",
)


agent = Agent(
    knowledge=knowledge,
    search_knowledge=True,
    read_chat_history=False,
)



agent.print_response("What skills does Jordan Mitchell have?", markdown=True)


agent.print_response(
    "In what year did Manchester United change their name?", markdown=True
)

Usage

1

Create a virtual environment

Open the Terminal and create a python virtual environment.
python3 -m venv .venv
source .venv/bin/activate
2

Install libraries

pip install -U lightrag pypdf openai agno
3

Set environment variables

export LIGHTRAG_API_KEY="your-lightrag-api-key"
export OPENAI_API_KEY=xxx
4

Run Agent

python cookbook/knowledge/vector_db/lightrag/lightrag.py