from os import getenv
from agno.agent import Agent
from agno.knowledge.knowledge import Knowledge
from agno.knowledge.reader.wikipedia_reader import WikipediaReader
from agno.vectordb.lightrag import LightRag
vector_db = LightRag(
api_key=getenv("LIGHTRAG_API_KEY"),
)
knowledge = Knowledge(
name="My Pinecone Knowledge Base",
description="This is a knowledge base that uses a Pinecone Vector DB",
vector_db=vector_db,
)
knowledge.add_content(
name="Recipes",
path="cookbook/knowledge/testing_resources/cv_1.pdf",
metadata={"doc_type": "recipe_book"},
)
knowledge.add_content(
name="Recipes",
topics=["Manchester United"],
reader=WikipediaReader(),
)
knowledge.add_content(
name="Recipes",
url="https://en.wikipedia.org/wiki/Manchester_United_F.C.",
)
agent = Agent(
knowledge=knowledge,
search_knowledge=True,
read_chat_history=False,
)
agent.print_response("What skills does Jordan Mitchell have?", markdown=True)
agent.print_response(
"In what year did Manchester United change their name?", markdown=True
)
Create a virtual environment
Terminal
and create a python virtual environment.python3 -m venv .venv
source .venv/bin/activate
Install libraries
pip install -U lightrag pypdf openai agno
Set environment variables
export LIGHTRAG_API_KEY="your-lightrag-api-key"
export OPENAI_API_KEY=xxx
Run Agent
python cookbook/knowledge/vector_db/lightrag/lightrag.py